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Textbook:
All members of the class will be required to obtain the following text:
Kevin Patrick Murphy, Machine Learning: a Probabilistic Perspective . MIT Press, 2012.

Grading:

¢ 5% Reading Summary

¢ 35% Homework

¢ 20% Midterm (Project or Exam, TBD)
¢ 40% Final Project

¢ [Up to 5% Extra Credit]



Course Requirements and Evaluation:
e Reading Presentations

All readings are compulsory, but some are more compulsory than others.

To encourage the goal of reading active research in the field, we will assign each non-Murphy
reading to a group of two students who will write a summary of 1-2 pages to be turned in at the
start of class. Each student will do approxiamately two summaries in total. They must be clear
and demonstrate that you have read the paper with a high degree of confidence. Credit will be
given on a 0-10 scale for each summary. Your summary should be done at a high level, and
should focus on the main point of the readings (i.e. avoid complicated math). As long as your

summary is reasonable, you will be given full credit.



Homework!

e Homework

The homework is due every week at the beginning of each lecture. There will be two parts for
each assignment: math and coding. The homework is split approximately evenly between
mathematical analysis and extension of our course material and application of algorithms to

real world data.



For coding: You are highly recommended to use Python3. For each problem, the starter code
and the sample solution are implemented in Python3. All the results and graphs for the sample
solutions were produced under Python 3.5.2 under macOS Sierra; different versions of Python
or system environment may produce different results. You are also welcome to use Jupyter

Notebooks, but the starter code is not provided in notebook format.

Numpy and Pandas are two important python libraries to know for coding assignment for this
course. You might also want to look at Matplotlib for generating plots. If you never used these

libraries before, make sure you check out the tutorials online before starting the first

assignment.



* At the end of each lecture, the head grader
will give you some instruction on how to start
to write your code and what would be some
of the expected challenges for the next coding
assignment.



Note:
1) When doing the coding problem for each homework set, you are not allowed to use any
machine learning algorithms implemented by external libraries, such as LinearRegression in

sklearn. However, you may use these algorithms in your final project.

2) Each homework has both pdf and tex versions. To have the tex files successfully compiled,

make sure that you have downloaded both macros.tex and hmcpset.cls and put them and the
hw tex file under same folder.
If you have any questions with regard to the compilation of the tex files, feel free to ask the

grutors for help.

3) For each coding problem, please submit your code to GitHub; please print out any graph or

printing statements and submit them with the written part.



Exams

e Midterm
The midterm will either be a take-home exam covering all topics seen in the first week of the
course or a project where you will apply the methods learned in the first half of the course

(TBD).

e Final Project
The final project is the largest component of the course. Each student will discover, explore,

and attack a real world problem of your choosing. The detailed description and requirements

for the final project can be found under the "Final Project" tab.



e GitHub

As we stated in the course overview, students are expected to become comfortable with
Github. Hence, each student is required to create a Github account for coding assignment
submission and final project submission. If you already have a Github account, that's perfect.
If not, please create a personal Github account and go over the tutorials online.

Note: Please make sure to send the username of your Github account to TA for homework

grading.



Classroom Policies:

e Attendence

Attendence for each lecture is mandatory and is expected of all class members. if you're going
to miss a lecture, it is neccessary for you to inform the instructor as soon as possible. You are

also responsible for obtaining notes from another class member.

e Devices
You are welcome to use your computer or tablet for note-taking (the PowerPoint slides will

also be posted shortly after the lecture for your convenience).
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Big Data Introduction

* Where does big data come from?

» Different ways to describe big data

* Data could be structure, semi-
structured, or unstructured

* Data challenges (e.q. “dirty” data)

\
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Data Representations:

Discrete
Real valued
Vector valued
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Mixed...




Today’s Lecture

* Frist: Big data introduction (answer first two
qUEStionS) Big Data Introduction

 Where does big data come from?
* Different ways to describe big data

* Second: Use linear regression as an example to
give an overview of big data analytics

Modeling Approaches:
e Statistical calculus
* Geometric analytic

* Probabilistic
Each has its own merit

* Note:
Mathematics of Big Data (in academic) ==

Big Data Analytics (in industry).



First: Introduction of Big Data
* Where does big data come from?

Organizations

Machines
People

Data is not new. But the scale has been changed!
The way how people using data has been transformed!



Types of big data

. Structured data (e.g. often Generated by
organizations)

. Semi-structured data (e.g. Generated by
machine with manual records)

. Unstructured data (often Generated by people)



 What exactly is big data?

* Does “big" here mean “big volume”?
* |Infact, thereare 5 “V”sto describe big data.

—Volume (Size)
—Velocity (Speed)
—Variety (Types)
—Veracity (Quality)
—Valence (Relationships)



As of 2011, the global size of
data in healthcare was
estimated to be

150 EXABYTES

[ 161 BILLION GIGABYTES ]

By 2014, it's anticipated
there will be

420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS

It's estimated that

2.5 QUINTILLION BYTES
[ 2.3 TRILLION GIGABYTES ]
of data are created each day

40 ZETTABYTES
[43 TRILLION GIGABYTES ]

of data will be created by
2020, an increase of 300
times from 2005
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Data to Decision (D2D)
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Second for today:
Analytic Approaches

* Use “linear regression” as an example to give
an overview of big data analytics

Modeling Approaches:
e Statistical calculus

 Geometric analytic
* Probabilistic

Each has its own merit |



1. Statistical Calculus Approach
(Classical Least Square Approximation)

sruwe have dato. pts (x:, 3;) ;;mL want o
find the line Y=mx +b which best eleseribes
the data .

jsvﬂf“"b

7he problem berds down to findd m & b,

. Theerror between one point amd the Iine s
€ =Y - (mx; +b)



Our objective is
minimizing the total error.

However, the errors e; some could be positive and
some could be negatlve A simple sum of the errors

would not work well.
Can you think about an example why not working well?
How to fix this problem?

Instead we consider the following objective or cost
function: . _—Lenom

)(m,b) (ifz (y,— mx;— b)?

Can we usetead?

L; norm




Goal: Find m and b to minimize the
cost function )

e How?
e Set all partials equal to zero!

e Work out the details with the students on the
board.



Obtained solution using Cramer’s rule

{alw +biy =¢

* Give a linear system:
arx + by =co

. - . ai bl XL Cq1
e Write it into matrix form: [ ] [ ] = [ ]
az by ly Co

Assume the coefficient matrix is invertible,
i.e. the det = a,b, - b,a, is nonzero. Then

c1 b a; ¢
_lea b2 by —bicy a2 | aier —cra
v a; by| aiby —biay’ v a; by| aiby —biay
as b az b



Close formula for Least Square Approximation

Using Cramer's m(e, We get selution fovm, b,

n 2"\. “Z‘ "\.Xz Q

L4 f—xg - Z’XQ.)

\ =f

- GOER) (5 (&)

hzx\ (

\ 3)

But the formula is massy. Next we'll find a compact form of this formula,



Linear Regression

Given some data: p = [x,y:}

20_ T ! 1 1 |
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Normal Equation for Least Square Approximation

* i.e. Representing the Least Square Solution in
Matrix Form

 Work out the details with the students on the
board.

e Recall the product rule:

* LgR2R: (f-9)=f-9+f-¢
e f g:ROR: V(f-9)=Vf-g+f-Vg
+ f,g:R>R": (f-g)=f"-g+f-g’

h=(X"X)'X"y




Homework problem
* Given 4 points as below:
(or D, C2,3), C3,6), (&,5)
a) Find y=mx+ b based on Cramer’s rule.
 Hint: s B | R

: -
f

< 4

* b) Usethe normal formula to find the solution and
compare it with that of a).

e ¢) Plot the data points, and draw y = mx +b.

e d) (All by coding) Find another 100 points near the
liney =mx + b. Then find the least square approxim’n
again & plot both the data points & the new line.



mtcars

http://www.rforscience.com/portfolio/mtcars/

mp9

How about fit data by a plane?



Get the same close solution by normal
equation!

* Can you imagine what other cases you would
get the same kind of solution?



2. Geometric Analytic Approach
(Geometric Least Square)

e Work out the details with the students on the
board.



Assume a linear model

Fn ¥n X1 c oo Xpm Wi

== r=(y-Xw)
This is equivalent to

y; = )_wx; + N(0,0%) = x;w + N(0,0?)

J



Key in Geometric Least Square Approximation
Geometrically you can see the solution!

i

r=y-Xw

Xw




Again we get the same solution!

h=(X"X)'X"y

Q: But what’s wrong if we use Cramer’s rule
to solve it?

Or directly use the formula by finding the
inverse X1 X ?



3. Probabilistic Approach
(Maximal Likelihood)

e Work out the details with the students on the
board.



Recall Gaussian distribution

Probability density function
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The red curve is the standard normal distribution




Notation  A/(u,o?)

Parameters 1 € R = mean (location)

o® > 0 = variance (squared scale)
Support xR
PDF 1 (z—pr)’




Expected Value
Let X be a random variable with a finite number of finite
outcomes x1, T2, ..., T occurring with probabilities p1, P2,
..., Dk, respectively. The expectation of X is defined as

k
E X]| = Zfﬂz Pi = T1p1 + TP + - + T Pk-
i=1

Since all probabilities p; add up to 1 (
p1 + p2 + - - -+ pr = 1), the expected value is the
weighted average, with p; ’s being the weights.



Special case: Average

If all outcomes x; are equiprobable (that is,

p1 = pa = -+ = Pi), then the weighted average
turns into the simple average. This is intuitive: the
expected value of a random variable is the
average of all values it can take; thus the expected
value is what one expects to happen on average.



Continuous case

If X is a random variable whose cumulative distribution
function admits a density f(x), then the expected value
IS defined as the following Lebesgue integral:

E[X] = /R zf(z) de.



The variance of a random variable X is the expected value
of the squared deviation from the mean of X, u = E|X]:

Var(X) = E[(X — u)?].
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Continuous case

If the random variable X represents samples generated by a
continuous distribution with probability density function f(z),

Var(X) = o? — / (z — )2 f() dz



Visualize Bayes’ Theorem

Whole space P(A) = 0 P(B) =

q
P(AIB) = " P(BJA) = T

P(AnB)=

[ ]
P(A) x P(BJA) = . X ‘ = ‘— = P(AnB)
B 0 L]
P(B) x P(A|B) = ; X .. — .i = P(AnB)

= P(B|A) =P(A|B) x P(B)/ P(A)



Viewed as a function of \theta.




e Back up slides
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Normal Equation for Least Square Approximation

* i.e. Representing the Least Square Solution in
Matrix Form

 Work out the details with the students on the
board.

e Recall the product rule:

* LgR2R: (f-9)=f-9+f-¢
e f g:ROR: V(f-9)=Vf-g+f-Vg
+ f,g:R>R": (f-g)=f"-g+f-g’

h=(X"X)'X"y




Mean

e Arithmetic Mean

The arithmetic mean (or simply "mean") of a sample 1, x2,...,Z,,
usually denoted by z, is the sum of the sampled values divided by the
number of items in the example

1 1+ x2 + -+ Ty
sk (3o ) - e

Expected Value:

The mean of a probability distribution is the long-run arithmetic
average value of a random variable having that distribution. In
this context, it is also known as the expected value. For a
discrete probability distribution, the mean is given by

> xP(x), where the sum is taken over all possible values of
the random variable and P(x) is the probability mass function.



Mean of a probability Distribution
(Expected Value)

The mean of a probability distribution is the long-run arithmetic
average value of a random variable having that distribution. In
this context, it is also known as the expected value. For a
discrete probability distribution, the mean is given by

> xP(x), where the sum is taken over all possible values of
the random variable and P(x) is the probability mass function.

For a continuous distribution,the meanis [~ zf(z) dz,

where f(z) is the probability density function.



If the entries in the column vector
X3
X =

Xn

are random variables, each with finite variance, then the covariance matrix 2 is

the matrix whose (J, /) entry is the covariance
Yij = cov(X;, X;) = E[(Xi — pi)(Xj — 1) | = E[ Xi X ] — papsy
where the operator E denotes the expected (mean) value of its argument, and
pi = E(X;)

is the expected value of the i th entry in the vector X.



Covariance Matrix

E[(X1 — p)(X1 — )] E[(X1 —p)(Xe —p2)] --- E[(X1 — 1) (Xn — pn)]
E[(Xs — p2)(X1 — )] E[(Xo —p2)(X2 —p2)] -+ E[(X2 — p2)(Xn — tn)]
5
| E[(Xn — ) (X1 — )] E[(Xp — pa)(Xo —p2)] -+ E[(Xn — ) (Xn — pta)]

Note: The covariance matrix is a symmetric matrix.
In fact, a covariant matrix is also positive semi-definite.

The inverse of this matrix, Z_l, if it exists, is the inverse covariance matrix,
also known as the concentration matrix or precision matrix.!!






