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Today

* Review Probability

— View Probability functions as special kind of functions
* Binomial
* Multinomial
* Poisson
* Beta distribution

— Key characteristics
— Conditional probability

* Generalized Linear Model (GLMs) (continued)
* Schur’s Complement

e Conditional Normal Distributions

* Review: Single variable normal distribution (i.e. Gaussian
distribution) and Multivariate Gaussian Distribution



A probability function is a special
function which must satisfy:




A Big Picture of Probability Theory °5/® <!

Key Characteristics:

Single rv Muliti-rv
E(X) & Condit’l Expec’n| Cov (X, Y)
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Meanings

Other known distrib’ns

Bernoulli
Beta 6 ~ Beta(a,b)

Chi-square
Poisson

Student’s t

Skewness etc. Corrl Matrix

Probability Rules for Events:
Product rule/iid

Discrete ﬁ Continuous

_ @

He-p ez e

2027

) 4 Uniform
Gaussian |piscrete distrib’nak%
Distrib s Aictrih’ i
E_m_dl_sﬁlb n It

Condi. Prob & Bayesian Rules
_ p(4,B)

Multinomial Multivari-Gaussian

1

B e ETh .

ALRRRY 7"
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p(X =z)p(Y =y|X =1x)

Joint probability £
Conditional Independence ‘%
2
Besides pmf/pdf, + 3 key fcns: §
 cdf (cumulative distri. fcn) .
* cf (characteristic fcn E(e™X)) 2
*  mgf (moment generating fcn) .

-0
Central Limit Theorem

Yo P(X =2)p(Y =y|X =2)

- tX
my(t) = E (ﬁ ) /\Other Key Tech: Making connection to !

derivative/Jacobian/integfations.

Key: View everything as functions. P eats an
observation x of a random variable X and sp

X—> f(X). Fore.g.s
its out f(X) = >a)X,

a value P(X=x) in [0,1], & the sum of all p(x) is 1. f(X) = AX +b
* Xisarandom variable. P(X=x) = p(x). f(X) = X"
Like the variables in calculus, we can add, subtract, f(X) = Taylor exp.

make linear combinations; or make new functions

f(x), also can take derivatives/integrations.

what is E(f(X))?

y=f(x)=Ax+b
Ely] =E[Ax+b]=Apu+b
cov [y] = cov[Ax +b] = AXAT

Py(y) = pa(x)| det (%") | = pa ()| det Ty

y=rx




Two different ways to generalize
Binomial distribution

e From Binomial distribution to Poisson
distribution

e From Binomial distribution to Multinomial
Distribution



e Recall: What are Multinomial distributions?

If a 6 sided die has
— 3 faces painted red
— 2 faces painted white
— 1 faces painted blue
And rolled 100 times.
Find P(60 red, 30 white, and 10 blue).

Work out details with the students on the board.

Generally an experiment with m outcomes with respective
probabilities p,, p,,..., p,, is performed n times independently.

Let x; = # of times outcome i appears, i=1,2,...,.m
Then P(x,=k,, x,=k,, ..., x,, = k,)="?

Claim: Multinomial distributions as exponential family distributi



Claim: Multinomial distributions as exponential family distribution.

e Work out details with the students on the board.



correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two

rvs X and Y is defined as
corr [X,Y] &

cov [X,Y]

If Xand Y are \/V&I‘ [X] var [Y]

indep., then cov [X,Y ] =0; say X and Y are uncorrelated.

e A correlation matrix of a random vector has the form:

/COI‘I‘ [Xl,Xl] COIrr [Xl, Xg]
R: . .

\corr [Xg, X;] corr [Xg, Xo]

corr [ X1, Xd]\

COIT [Xd, Xd]/

Exercise: show that —1 € corr [X, ¥ ] € 1 and
Show that corr[X,Y] = 1 Yf ¥ = aX +b for some parameters a and b.



Example of Correlation Coefficients

Figure 2.12 Several sets of (x,y) points, with the correlation coefficient of z and y for each set. Note
that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope
of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the
center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y
is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png



Conditional Probability

The conditional probability of event A,
given that event B is true:

p(A]B) = * 5;?1’31)3) if p(B) > 0
Bayes rule:
(H=aly =g < PE=BY =0 pX=apll =yfX =1

V=y)  LypX=o)pl =yX =2



Recall: Probability of an Event

* p(A) denotes the probability that the event A is true.
* For example:

* A =alogical expression “it will rain tomorrow”
We require that 0 < p(A) £ 1.

p(A) = 0 means the event definitely will not happen
P(A) = 1 means the event definitely will happen

p(A) denotes the probability of the event not A

p(A) =1—p(A)

We also write:
A=1 to mean the event A is true.
A=0 to mean the event A is false.



Recall: Fundamental Rules

p(AV B) = p(d)+p(B)—p(AAB)
= p(A) + p(B) if A and B are mutually exclusive

p(A, B) = p(A N B) = p(A|B)p(B)

p(A) =) p(A,B)=) p(A|B=b)p(B =b)
b b

p(X1.p) = p(X1)p(X2|X1)p(X3| X2, X1)p(X4| X1, X2, X3)...0(XD|X1.D-1)



Changing gear:
Recall: Gaussian with one variable

(called Univariate Gaussian)
Gaussian distribution with mean p, and standard deviation o.

(Zo ‘1 ix)d

34.1% | 34.1%

T — 2
p(x; 1, 0°) =a\/1§exp( ( 205) )

When u=0 and o =1, itis call the standard normal distribution.



Different ways to find expected values

(60
[ Where f(x) is the probability
ElX] = / xf (x)dx density function of X.
)

Example: Let f(x) be the density of the standard normal
distribution.

1 —x2 &0 1 —x2
— 2 ElX] = 2 dx
Jx) = 5= X1 /_wxme

Method 1: Since is xe—xz/zan odd function and the limits
of the integral are symmetric, so we get E[X] =0.

Method 2: Directly integrate.

Method 3: Using the moment generating function.



Method 2
x2

1 © _T

1 = _2/2 .x2
— enviadi-—t
= [ e

— 1 e—x2/2 o0
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Method 3

* The moment generating function is defined as
¢(1) = E[e™].

() = C / tx ,~x 24 — C / —x*2tix gy — o200 / o012 g,
R R / R

PN

12— (x =012 =112+ (—x*12 + tx — 1°/2) = —x*/2 + 1x \\]

1
@) = =14 (@212) + l(z‘2/2)2 + ot l(12/2)k +
2 k!
E[etX] =F [1 + tX + %(IX)Z IE R E %(tX)n + ] When k =1,

E[x?] =1.
1 1
=1+ E[X]t + ZEIX?]F* + oo + —EIX"]1" + o :> E[x] =0| |Variance = 1.

2

Compare: f
1 :> Ex* = 0 o,

E[XZk]tZk t2/2 k
(26! !( ik 2"k' 2%k



Properties of Gaussians X ~ N(u. o)

1
2

x, U, o) = exp(—
p( H ) > (

 Integration of the densities eauals to 1.

2
o0 .2 /OO 1 (z — p)
! , d —_— ex - d :1
[ optaima®iz= [ o em(-= e

(x — p)?
252

)

* Mean: Ex[X]

>C 2
/ xp(x;, u,oc<)dx

— .
~ /—ooxax/lﬂexp(_( 205) Jdx
= p
* Variance:
ExIX -2 = [ (@—m)2p(a;p.o?)da
00 v — 11)2
= [T @ mP e (-

0_2



In general, do translation and scale;
i.e. change of variables when try to
find those key characteristic values

LT B W TR R AT R E BTE N AT

1.0
e H=0, 0%=0.2, ==
- (\ H=0, 0%=1.0, =]
08 2 ||
) H=0, 0?%=5.0, == |
L H=-2, 0%=0.5, ==
0.6
0.4
0.2
0.0
1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1 1 I 1
=5 -4 = -2 -1 0 1 2 3 4 5



Covariance, and Covariance Matrix

* The covariance between two rv's X and Y measures
the degree to which X and Y are (linearly) related;

defined as
cov[X,Y] £ E[X-E[X])(Y -E[Y])]

—E[XY]-E[X]E[Y]

If x is a d-dimensional random vector, its covariance matrix is
defined to be the following symmetric, positive definite matrix:

covlx] 2 E|(x—E[x)(x-E[x)"

f / var [ X1] cov [X1,Xs] --- cov [Xl,Xd]\
g¥€; denoted | cov [ X2, X1] var [ X 2] -+ cov|[Xa, X4
J 4 — . : .
\cov [X:d,Xl] cov [Xg, Xa] --- var [ X 4] )




correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two

rvs X and Y is defined as
corr [X,Y] &

cov [X,Y]

If Xand Y are \/V&I‘ [X] var [Y]

indep., then cov [X,Y ] =0; say X and Y are uncorrelated.

e A correlation matrix of a random vector has the form:

/COI‘I‘ [Xl,Xl] COIrr [Xl, Xg]
R: . .

\corr [Xg, X;] corr [Xg, Xo]

corr [ X1, Xd]\

COIT [Xd, Xd]/

Exercise: show that —1 € corr [X, ¥ ] € 1 and
Show that corr[X,Y] = 1 Yf ¥ = aX +b for some parameters a and b.



Example of Correlation Coefficients

Figure 2.12 Several sets of (x,y) points, with the correlation coefficient of z and y for each set. Note
that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope
of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the
center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y
is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png



The multivariate Gaussian (distribution)
or multivariate normal (MVN)

(The most widely used joint probability density function for continuous variables)

1 1

N, B) 2 s o [~ (e w78 - )

déterminant

where ¢ = E[x] € RP and ¥ = cov [x]

Note: the precision matrix or concentration matrix is just

the inverse covariance matrix, A = X!

A spherical or isotropic covariance 37 — 52,
has one free parameter.
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Now let’s visualize as pu changes

u = [1; 0]
[1 0;0 1]
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isualization
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The cumulative distribution function (cdf)

* For Gaussian distribution: &(z; 41, o / N (z|p, o2
* This integral has no closed

form expression, but is built in to most software packages.

O(z;pu,0) = %[1 + erf(z/v/2)] where z = (z —#)/a and
erf(z) = l/ et dt
VT Jo

CDF

100

801

601

401

201

o 3 @ (0/2) 0 @ (1-a/2)

(@) Plot of the cdf for the standard normal, N(0,1). (b) Corresponding pdf



About your homework...
Beta Distribution
Study it in detail - Homework

PDF 2 1(1 — )P!
B(a, B)

I'(a)T'(B)

where B(a, B) = Tatp



Beta

PDF

Probability density function
2.5 1
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Review: Probability of an Event

* p(A) denotes the probability that the event A is true.
 For example:

* A =alogical expression “it will rain tomorrow”
We require that 0 < p(A) < 1.

p(A) = 0 means the event definitely will not happen
p(A) = 1 means the event definitely will happen

p(A) denotes the probability of the event not A

p(A) =1—p(A)

We also write:
A=1 to mean the event A is true.
A=0 to mean the event A is false.



Review: Fundamental Rules

p(AV B) = p(d)+p(B)—p(AAB)
= p(A) + p(B) if A and B are mutually exclusive

p(A, B) = p(A N B) = p(A|B)p(B)

p(A) =) p(A,B)=) p(A|B=b)p(B =b)
b b

p(X1.p) = p(X1)p(X2|X1)p(X3| X2, X1)p(X4| X1, X2, X3)...0(XD|X1.D-1)



* Independence (or unconditionally
independent or marginally independent)
denoted X L Y:

X 1Y < p(X,Y) = p(X)p(Y)

* Conditional Independence

X LY|Z < p(X,Y|Z) = p(X|Z2)p(Y|2)
Theorem: X L Y |Ziff there exist function g and h such that
p(z,y|z) = g(z, 2)h(y, 2)
for all x,vy, z such that p(z) > 0.



The conditional probability of event A,
given that event B is true:

_p4,B) .
p(A|B) = o(B) f p(B) >0
Bayes rule:
p(X:a;|Y:y) :p(X:a:,Y:y) _ P(Xzfﬂ)p(Y:y\X:x)

pV=y)  Lopld=a)plt =yX =1



Example: medical diagnhosis

Suppose | did a medical test for breast cancer,
called a mammogram. If the test is positive, what
is the probability | have cancer? (here y=1 means
cancer is true, and x=1 means test is positive).

Suppose | have cancer, the test will be positive
with probability 0.8. l.e. p(x=1|y=1)=0.8.

If | conclude therefore 80% likely | have cancer.
True or False?

False!

It ignores the prior probability of having breast
cancer, which fortunately is quite low:

p(y =1) =0.004



Using Byes Rule

= l|z = = plz =1y =1)p(y = 1)
ply =1z =1) p(z =1y =1)py =1) + p(z = 1|y = 0)p(y = 0)
_ 0.8 x 0.004 0,031

0.8 x 0.004 + 0.1 x 0.996
Where 1) p(y=0)=1-p(y=1)=0.996 '

2) Take into account the fact that the test may be
a false positive or false alarm. With current
screening technology:

p(x=1|ly=0)=0.1
In other words, if I test posi&ive, I only have about a
3% chance of actually having breast cancer!

Generative classifier

_ e o)~ Ply=0)p(x]y = c,0)
Py = clx. ) > Py =C|0)p(x|y =, 0)

This is called a generative classifier, since it specifies how to generate the data
using the class- conditional density p(xly = c¢) and the class prior p(y = c).




Change Gear to
The Generalized Linear Models
(GLMs)

Prof. Weiqging Gu
Harvey Mudd College
Summer 2017
https://math189sul7.github.io/project.html



What is the Generalized Linear Models?

LinearModel ., Y=mX+b___, Y =0p+061X4

/
X.=house features
Y = predicted house price Y =06p+ 61 X1 + 60:X2 + ... + 6, X,
p
Let Xp =1

Y = X6
(General) Linear Models

1. Extend predicted value to be vector valued. 2. Extend X to “catogrical”.
E.g. Y,= price, Y, = how many people buy X = values of it category
houses with the given the same
features (X, X, ..., X,)

-> Multivariable regression

3. Extend to Polvnomial fitting:
Y =0+ 6 X +60,X2+ ... +6,X"
It is still linear with respect to 6;’s.

Generalized Linear Models

Using hypothesis related to exponential family: the major part of it is an
exponential of something, that something is a Linear Model!



(General) Linear Models

X.s are measured
independent variables,

: may be continuous, ? New A, NewX
Y is a measured , S TN
may be categorical 2 5
dependent : ;
. Or_may,be a mixture. - -
variable

Here we have 3 categories.
The 3 one with entries all O,
called the reference category.

i+9 X1—|-92X2 ;9,1X1+e

Residual/Erro
xTe

term.
Regression weights, ornparameters of thedinear model, each assesses the

feature/factor, X’s contribution to predict the value of dependent variable Y.
Note x, — 1 . If all X.=0, we will predict that the value Y to be 6 .

Story: How to predict Y from the knowledge of X.s?

XT9 = the estimation of Y. It may not be accurate, too high, or too low.

€ =what can not be predicted from the knowledgeof xTp . ¢ = Y — XTB



The linear model answer the following questions:

How do these independent factors (X, X,, ..., X)) predict a single dependent
variable (Y,)?

What is the best predictor of Y, given measured X.s?

Note for each Y; there is set of best weights.

(Y1, Ya) = (X761, X76,) = X7 (64, 602)




Recall: Forourlinear model: ¢ — gT () 4 (@)

p(e) = L e (_(6(”)2)

2o 202

o 1 Y — T 502
p(yP]a®; 9) = exp(—( )

2mo 202

y' | ;0 ~ N (672, 0?).

Given X (the design matrix, which contains all the z(¥)’s) and 6, what
is the distribution of the y®’s? The probability of the data is given by
p(y]X;0). This quantity is typically viewed a function of ¢ (and perhaps X),
for a fixed value of 6. When we wish to explicitly view this as a function of
0, we will instead call it the likelihood function:

L(0) = L(6; X, 9) = p(§]X; 0).

— (z@)T ()70 y)
X = - - X0-§ = s -
(x(m))Tg y (™)




Recap how we find the maximum—This gives a general
method called Maximum Likelihood Estimation.

e Obtain the likelihood
L(t)=f(w)... f(»,)

* Log it —to make it easier & fast in calculation.
Keep the advantage of the linear predictor.

InL(u)
* Differential and set the derivative equal to O.

d .
InL(u)=0 = [=..
tfj!

e Checkitis a maximum: g



Find parameters for the GLMs

Obtain a likelihood function
Log it to make it easier in differentiate

Use the link function to replace the means
resulting a function in the parameters.

Differentiate with respect to the parameters
and set the derivatives all to zero and solve for
the optimal parameters.



Let’s Derive

A GLM using
Multinomial distributions which we have shown that they
exponential family distributions.

Recall: Generally an experiment with m outcomes
with respective probabilities p,, p,,..., p,, is performed
n times independently.

Let x; = # of times outcome i appears, i=1,2,....m
Then P(x,=k,, x,=k,, ..., x,, = k_)="?

e Work out details with the students on the board.



Examples of

Generalized Linear Models (GLMs)

* Use GLMs and exponential family to get Softmax Regression.

e Recall: What is an exponential family? A class of
distributions is in the exponential family if

p(y;n) = b(y) exp(n" T (y) — a(n))

* n =the natural parameter (or the canonical
parameter) of the distribution

* T(y) = the sufficient statistic ( often T(y) = y)

* a(n) is the log partition function.

The quantity e 2 essentially plays the role of a normalization constant,
that makes sure the distribution p(y; n) sums/integrates overy to 1.

Let T, a and b fixed and let the parameter n vary, then it defines a family of distribution.
i.e. We get different distributions within this family.



We saw

Bernoulli distributions are exponential family distribution.

e Work out details with the students on the board.



Gaussian distributions are exponential family distribution.

p(y;p) = \/127 exp (—%(y — M)Q)

= exp | —= - €X — =
Nors p 9 Y P\ 1Y 9 M
Compare:

p(y;n) = b(y) exp(n' T (y) — a(n))

We get: n = WK
T(y) =y

a(n) = p*/2

= n?/2

bly) = (1/v2m)exp(—y?/2).




Example of Constructing GLMs

Note: you need to know which distribution models what kind of problems

(Reading assignment)
Suppose you want to build a model to estimate the
number (y) of customers arriving in your store in any given
hour, based on certain features x such as store
promotions, recent advertising, weather, day-of-week, etc.

We know that the Poisson distribution usually gives a good
model for numbers of visitors.

Knowing this, how can we come up with a model for this
problem?

Fortunately, the Poisson is an exponential family
distribution, so we can apply a Generalized Linear Model
(GLM). (Homework or exam problem?)

Lots of known distributions are exponential families.

Here, we will describe a method for constructing GLM
models for problems such as these.



Assumptions for Generalized Linear Models

* |n generally, consider a classification or regression problem
where we would like to predict the value of some random
variable y as a function of x.

* To derive a GLM for this problem, we will make the following
three assumptions about the conditional distribution of y given x
and about our model:

1.y | x; © ~ Exponential Family(n). l.e., given x and 6, the
distribution of y follows some exponential family distribution,
with parameter n.

* 2. Given x, our goal is to predict the expected value of T(y) given
X. Since often T(y) =y, so this means we would like the prediction
h(x) output by our learned hypothesis h to satisfy h(x) = E[y] x].
(Note that this assumption is satisfied in the choices for hg(x) for
both logistic regression and linear regression. For instance, in
logistic regression, we had

he(x) =ply=1|x;6)=0-p(y=0]|x; 0) +1-p(y=1]|x; 0) = E[y|x; 6].)

e 3. The natural parameter n and the inputs x are related linearly:
n=0Tx.(Or, if nis vector-valued, thenn, =0, " x.)



Examples: Least square and Logistic
regression are GLM family of models

L

= 0.

Ely|z; 0]

¢
1/(14+¢e™
1/(14+e7%)

Ely|x; 0]

Given that y is binary-valued, it therefore
seems natural to choose the Bernoulli
family of distributions to model the
conditional distribution of y given x. In our
formulation of the Bernoulli distribution as
an exponential family distribution, we had
& =1/(1+e ™). Furthermore, note that if
v|x; 6 ~ Bernoulli(¢), then E[y|x; 8] = ¢.



Softmax Regression

e Let’s look at another example of a GLM. Consider a
classification problem in which the response variable y
e{12,...,k}.

* For example, rather than classifying email into the two
classes spam or not-spam—which would have been a
binary classification problem— this time we want to
classify it into four classes, such as spam, family-mail,
friends-mail, and work-related mail. The response
variable is still discrete, but can now take on more than
two values. We will thus model it as distributed
according to a multinomial distribution.



Details of Softmax Regression

e Work out details with the students on the
board.



Today we also learn:

Schur Complement

* This is related how we triage data and solve a
smaller problem involving big data first.

— Smaller system to solve
— Smaller matrix to invert

— The process can be iterated to make the problem to a
smaller and smaller size. (This is very powerful for
dealing with big data. This is one of the dimension
reduction methods.)

* |tis also very important for study the Conditional
Gaussian distribution.

e Work out details with the students on the board.



What is a conditional distribution?

* A conditional distribution is a probability
distribution for a sub-population.

* |In other words, it shows the probability that a
randomly selected item in a sub-population
has a characteristic you’re interested in.

* For example, if you are studying eye colors
(the population) you might want to know how
many people have blue eyes (the sub-
population).



Conditional Distribution
Discrete example

Eyve Color

Male

Female

Total

e.g. We restrict to onkn Blue eyes, the
conditional distribution is Male:15 and Femaie:5 .
This is called a conditional distribution.



Conditional Distribution (continuous)

If N-dimensional x is partitioned as follows

lxl ] . : [ gx1 ]
X = with sizes
X2 (N —gq) x1

Later!

and accordingly p and Z are partitioned as follows

1
u:!ullwithsizes[ 7% ]
Mo (N —gq) x1
N —
2:[211 212]Withsizes! x4 q><( q)
o1 2o (N—q) xq (N—gq)x(N-—gq)

then the distribution of x4 conditional on x, = a is
multivariate normal (x4 | X, = a) ~ N(u, Z) where

p+ 1235 (a— p,y)

<« —1
2 =11 — X2 222 391 «— the Schur complement of 255 in 2

it
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Note: Polynomial data fitting is also a linear model,
also will be resulted in the normal equation

Xi Yi - equation!
" " 11 1

22 2 1f|a| |5
2 5

32 3 1||b|=]| 8 |
3 8 ,

4 4 1|lc| (17
! 7 52 5 1] 26 |
5 16

So, a good fit to the data is to find a, b, and ¢ such that y(x) = ax? + bx + ¢ is "closest" to

the data. In the least squares sense the means for r; = y;— y(x;) = yi— (a xiz +bxitc).

Same geometric argument works to
get the normal equation!

When we have polynomials with multi-variables, the size of the X"™X can be very large.



