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Today	
•  Review	Probability	
– View	Probability	func'ons	as	special	kind	of	func'ons	

•  Binomial	
•  Mul'nomial	
•  Poisson	
•  Beta	distribu'on	

–  	Key	characteris'cs	
–  Condi'onal	probability	

•  Generalized	Linear	Model	(GLMs)	(con'nued)		
•  Schur’s	Complement	
•  Condi'onal	Normal	Distribu'ons	

•  Review:	Single	variable	normal	distribu'on	(i.e.	Gaussian	
distribu'on)	and	Mul'variate	Gaussian	Distribu'on	



A	probability	func-on	is	a	special	
func-on	which	must	sa-sfy:	



A	Big	Picture	of	Probability	Theory		

Key:	View	everything	as	func'ons.	P	eats	an	
observa'on	x	of	a	random	variable	X	and	spits	out	
a	value	P(X=x)	in	[0,1],	&	the	sum	of	all	p(x)	is	1.		
•  X	is	a	random	variable.		P(X=x)	=	p(x).	
Like	the	variables	in	calculus,	we	can	add,	subtract,	
make	linear	combina>ons;	or	make	new	func>ons		
f(x),	also	can		take	deriva>ves/integra>ons.	

where	Σ	=	cov	[x]	

	 	
Xà	f(X).		For	e.g.s		
f(X)	=	∑aiXi	
f(X)	=	AX	+b	
f(X)	=	Xn	
f(X)	=	Taylor	exp.	
	

what	is	E(f(X))?	
	

Other	known	distrib’ns	
Bernoulli	
Beta			
Chi-square	
Poisson	
Student’s	t	
Uniform	

Key	Characteris'cs:	

Discrete	distrib’n			
Con-.	distrib’n	

	
Probability	Rules	for	Events:	

Product	rule/iid	
Joint	probability	

Condi-onal	Independence	

•  Central	Limit	Theorem	
Other	Key	Tech:	Making	connec-on	to	
deriva-ve/Jacobian/integra-ons.	

Besides	pmf/pdf,		+	3	key	fcns:		
•  cdf	(cumula-ve	distri.	fcn)		
•  cf	(characteris-c	fcn	E(eitX))	
•  mgf	(moment	genera-ng	fcn)	
						mX(t)	=	E	(etX)	

Condi.	Prob	&	Bayesian	Rules	

Muli--rv	
Cov	(X,	Y)	
Corrl(X,	Y)	
Cov.	Matrix	
Corrl	Matrix	

Single	rv	
E(X)	&	Condit’l	Expec’n	
Variance/Stan.	Devi.	
Moments	
Skewness	etc.	
	

Probability	Distribu'ons	
(Discrete		&	Con-nuous)	
	and	their		Geometric		
Meanings	

	

Gaussian		
Distrib.		 Taking		

limit	



Two	different	ways	to	generalize	
Binomial	distribu'on	

•  From	Binomial	distribu-on	to	Poisson	
distribu-on	

•  From	Binomial	distribu-on	to	Mul-nomial	
Distribu-on	



	
	Claim:	Mul'nomial	distribu'ons	as	exponen'al	family	distribu'on.	

	
•  Recall:	What	are	Mul'nomial	distribu'ons?	
•  For	example:	If	a	6	sided	die	has		

–  3	faces	painted	red	
–  2		faces	painted	white	
–  1	faces	painted	blue	
And	rolled	100	-mes.			
Find	P(60	red,	30	white,	and	10	blue).	
	
Work	out	details	with	the	students	on	the	board.	
	
Generally	an	experiment	with	m	outcomes	with	respec>ve	
probabili>es	p1,	p2,…,	pm	is	performed	n	>mes	independently.	
Let	xi	=	#	of	>mes	outcome	i	appears,		i=1,2,…,m	
Then	P(x1=k1,	x2=k2,	…,	xm	=	km)	=	?	

	



•  Work	out	details	with	the	students	on	the	board.	

	
	Claim:	Mul'nomial	distribu'ons	as	exponen'al	family	distribu'on.	



correla'on	coefficient	&	correla'on	matrix		
	•  The	(Pearson)	correla'on	coefficient	between	two	

rvs	X	and	Y	is	defined	as		

•  If	X	and	Y	are		
						indep.,	then	cov	[X,	Y	]	=	0;	say	X	and	Y	are	uncorrelated.		

	
	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 

•  A	correla'on	matrix	of	a	random	vector	has	the	form:	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 and 
Show that corr[X,Y] = 1 iff Y = aX +b for some parameters a and b.  
 



Example	of	Correla'on	Coefficients	



Condi'onal	Probability	
		

The	condi'onal	probability	of	event	A,	
given	that	event	B	is	true:		

	

Bayes	rule:		
	



Recall:	Probability	of	an	Event	
•  p(A)	denotes	the	probability	that	the	event	A	is	true.	
•  For	example:	
•  A	=	a	logical	expression	“it	will	rain	tomorrow”		
	We	require	that	0	≤	p(A)	≤	1.		
p(A)	=	0	means	the	event	definitely	will	not	happen	
p(A)	=	1	means	the	event	definitely	will	happen		
									denotes	the	probability	of	the	event	not	A		
				
	
We	also	write:	
A=1	to	mean	the	event	A	is	true.	
A=0	to	mean	the	event	A	is	false.		
	



Recall:	Fundamental	Rules	



Changing	gear:	
Recall:	Gaussian	with	one	variable		

(called	Univariate	Gaussian)		
Gaussian	distribu'on	with	mean	μ,	and	standard	devia'on	σ.	

When	μ	=	0		and		σ	=	1,	it	is	call	the	standard	normal	distribu>on.		



Different	ways	to	find	expected	values	
Where	f(x)	is	the	probability	
density	func-on	of		X.	
			

Example:	Let	f(x)	be	the	density	of	the	standard	normal	
distribu-on.	

Method	1:	Since	is																		an	odd	func-on	and	the	limits	
of	the	integral	are	symmetric,	so	we	get	E[X]	=0.		
	
Method	2:	Directly	integrate.	
	
Method	3:	Using	the	moment	genera-ng	func-on.	



Method	2	



Method	3	
•  The	moment	genera-ng	func-on	is	defined	as	

When	k	=1,		
E[x2]	=1.	
Variance	=	1.	

1	

E[x]	=	0	
Compare:	



Proper'es	of	Gaussians		
	
•  Integra-on	of	the	densi-es	equals	to	1.	

	
•  Mean:	

	
•  Variance:	



In	general,	do	transla'on	and	scale;	
i.e.	change	of	variables	when	try	to	
find	those	key	characteris'c	values	



	
	

Covariance,	and	Covariance	Matrix	
	
	•  The	covariance	between	two	rv’s	X	and	Y	measures	

the	degree	to	which	X	and	Y	are	(linearly)	related;	
defined	as	

Exercise	

	
If	x	is	a	d-dimensional	random	vector,	its	covariance	matrix	is	
defined	to	be	the	following	symmetric,	posi-ve	definite	matrix:	

Ofen denoted  
by ∑  
 



correla'on	coefficient	&	correla'on	matrix		
	•  The	(Pearson)	correla'on	coefficient	between	two	

rvs	X	and	Y	is	defined	as		

•  If	X	and	Y	are		
						indep.,	then	cov	[X,	Y	]	=	0;	say	X	and	Y	are	uncorrelated.		

	
	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 

•  A	correla'on	matrix	of	a	random	vector	has	the	form:	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 and 
Show that corr[X,Y] = 1 iff Y = aX +b for some parameters a and b.  
 



Example	of	Correla'on	Coefficients	



	
The	mul'variate	Gaussian	(distribu'on)	

or	mul'variate	normal	(MVN)		
(The	most	widely	used	joint	probability	density	func-on	for	con-nuous	variables)		

	

Note:	the	precision	matrix	or	concentra'on	matrix	is	just			
	

A	spherical	or	isotropic	covariance		
has	one	free	parameter.	

determinant	













Now	let’s	visualize	as	µ	changes	







Level	sets	visualiza'on	



The	cumula-ve	distribu-on	func-on	(cdf)		
	•  For	Gaussian	distribu-on:	

•  This	integral	has	no	closed	
						form		expression,	but	is	built	in	to	most	sorware	packages.		



About	your	homework…	
Beta	Distribu'on	

Study	it	in	detail	-	Homework	





Review:	Probability	of	an	Event	
•  p(A)	denotes	the	probability	that	the	event	A	is	true.	
•  For	example:	
•  A	=	a	logical	expression	“it	will	rain	tomorrow”		
	We	require	that	0	≤	p(A)	≤	1.		
p(A)	=	0	means	the	event	definitely	will	not	happen	
p(A)	=	1	means	the	event	definitely	will	happen		
									denotes	the	probability	of	the	event	not	A		
				
	
	
We	also	write:	
A=1	to	mean	the	event	A	is	true.	
A=0	to	mean	the	event	A	is	false.		
	



Review:	Fundamental	Rules	



•  Independence	(or	uncondi'onally	
independent	or	marginally	independent)	
denoted		X	⊥	Y:	

•  Condi'onal	Independence	

Theorem:				X	⊥	Y	|Z	iff	there	exist	func8on	g	and	h	such	that	
	
		



The	condi'onal	probability	of	event	A,	
given	that	event	B	is	true:		
	

Bayes	rule:		
	



Example:	medical	diagnosis		
	•  Suppose	I	did	a	medical	test	for	breast	cancer,	

called	a	mammogram.		If	the	test	is	posi-ve,	what	
is	the	probability	I	have	cancer?		(here	y=1	means	
cancer	is	true,	and	x=1	means	test	is	posi8ve).	

•  Suppose	I	have	cancer,	the	test	will	be	posi-ve	
with	probability	0.8.	I.e.		p(x	=	1|y	=	1)	=	0.8.	

•  If	I	conclude	therefore	80%	likely	I	have	cancer.			
True	or	False?	

•  False!			
•  It	ignores	the	prior	probability	of	having	breast	
cancer,	which	fortunately	is	quite	low:		

•  p(y	=	1)	=	0.004		



Using	Byes	Rule	

2)	Take	into	account	the	fact	that	the	test	may	be	
a	false	posi-ve	or	false	alarm.	With	current	
screening	technology:	
p(x	=	1|y	=	0)	=	0.1	

Where	1)		p(y	=	0)	=	1	−	p(y	=	1)	=	0.996	.	

In other words, if I test positive, I only have about a 
3% chance of actually having breast cancer! 

	
This is called a generative classifier, since it specifies how to generate the data 
using the class- conditional density p(x|y = c) and the class prior p(y = c). 


Genera-ve	classifiers	



Change	Gear	to	
The	Generalized	Linear	Models	

(GLMs)	

Prof.	Weiqing	Gu	
Harvey	Mudd	College	
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h{ps://math189su17.github.io/project.html	



What	is	the	Generalized	Linear	Models?	
Linear	Model	
	
	
(General)	Linear	Models	
	
	
	
Generalized	Linear	Models	

Xi=	house	features	
Y	=	predicted	house	price	

1.	Extend	predicted	value	to	be	vector	valued.	
E.g.	Y1=	price,	Y2	=	how	many	people	buy		
houses	with	the	given	the	same	
	features	(X1,	X2,	…,	Xn)	
->	Mul'variable	regression		

2.	Extend	X	to	“catogrical”.	
Xi	=	values	of	ith	category		

Using	hypothesis	related	to	exponen-al	family:		the	major	part	of	it	is	an	
exponen-al	of	something,	that	something	is	a	Linear	Model!	
		

3.		Extend	to	Polynomial	fi}ng:	



(General)	Linear	Models	
	

Y	is	a	measured	
dependent	
	variable	

Xis	are	measured	
independent	variables,		
may	be	con-nuous,	
may	be	categorical		
Or	may	be	a	mixture.		

Here	we	have	3	categories.		
The	3rd	one	with	entries	all	0,	
called	the	reference	category.	

Regression	weights,	or	parameters	of	the	linear	model,	each	assesses	the	
feature/factor,	Xi’s	contribu-on	to	predict	the	value	of	dependent	variable	Y.	
Note																.		If	all	Xi=0,	we	will	predict	that	the	value	Y	to	be						.	

Story:		How	to	predict	Y	from	the	knowledge	of	Xis?		

=	the	es-ma-on	of	Y.		It	may	not	be	accurate,	too	high,	or	too	low.	
	

Residual/Erro	
term.		

=	what	can	not	be	predicted	from	the	knowledge	of										.			



The	linear	model	answer	the	following	ques'ons:	
•  How	do	these	independent	factors	(X1,	X2,	…,	Xn)	predict	a	single	dependent	

variable	(Yi)?		
•  What	is	the	best	predictor	of	Yi	given	measured	Xis?	
•  Note	for	each	Yi,	there	is	set	of	best	weights.		



Recall:		For	our	linear	model:	
		



Recap	how	we	find	the	maximum—This	gives	a	general	
method	called	Maximum	Likelihood	Es'ma'on.	

•  Obtain	the	likelihood	
	
•  Log	it	–	to	make	it	easier	&	fast	in	calcula-on.	
Keep	the	advantage	of	the	linear	predictor.		

	
•  Differen-al	and	set	the	deriva-ve	equal	to	0.		

•  Check	it	is	a	maximum:	



Find	parameters	for	the	GLMs	
•  Obtain	a	likelihood	func'on	
	
•  Log	it	to	make	it	easier	in	differen'ate	

•  Use	the	link	func'on	to	replace	the	means	
resul'ng	a	func'on	in	the	parameters.		

•  Differen'ate	with	respect	to	the	parameters	
and	set	the	deriva'ves	all	to	zero	and	solve	for	
the	op'mal	parameters.	



Let’s	Derive	
A	GLM	using	

	Mul'nomial	distribu'ons	which	we	have	shown	that	they		
exponen'al	family	distribu'ons.	

Recall:	Generally	an	experiment	with	m	outcomes	
with	respec>ve	probabili>es	p1,	p2,…,	pm	is	performed	
n	>mes	independently.	
Let	xi	=	#	of	>mes	outcome	i	appears,		i=1,2,…,m	
Then	P(x1=k1,	x2=k2,	…,	xm	=	km)	=	?	

•  Work	out	details	with	the	students	on	the	board.	



Examples	of	
Generalized	Linear	Models	(GLMs)	

	•  Use	GLMs	and	exponen>al	family	to	get	SoTmax	Regression.	

•  Recall:	What	is	an	exponen8al	family?		A	class	of	
distribu-ons	is	in	the	exponen-al	family	if	

•  η	=	the	natural	parameter	(or	the	canonical	
parameter)	of	the	distribu-on		

•  T(y)	=	the	sufficient	sta-s-c	(	oren	T(y)	=	y)	
•  a(η)	is	the	log	par--on	func-on.		
The	quan-ty	e	−a(η)	essen-ally	plays	the	role	of	a	normaliza-on	constant,	
that	makes	sure	the	distribu-on	p(y;	η)	sums/integrates	over	y	to	1.	
Let	T,	a	and	b	fixed	and		let	the	parameter	η	vary,	then	it	defines	a	family	of	distribu-on.		
i.e.	We	get	different	distribu-ons	within	this	family.	
		



We	saw	
Bernoulli	distribu'ons	are	exponen'al	family	distribu'on.	

•  Work	out	details	with	the	students	on	the	board.	



Let’s	first	show		
Gaussian	distribu'ons	are	exponen'al	family	distribu'on.	

Compare:		

We	get:		



Example	of	Construc'ng	GLMs			
Note:	you	need	to	know	which	distribu'on	models	what	kind	of	problems	

•  	Suppose	you	want	to	build	a	model	to	es-mate	the	
number	(y)	of	customers	arriving	in	your	store	in	any	given	
hour,	based	on	certain	features	x	such	as	store	
promo-ons,	recent	adver-sing,	weather,	day-of-week,	etc.		

•  We	know	that	the	Poisson	distribu-on	usually	gives	a	good	
model	for	numbers	of	visitors.		

•  Knowing	this,	how	can	we	come	up	with	a	model	for	this	
problem?		

•  Fortunately,	the	Poisson	is	an	exponen-al	family	
distribu-on,	so	we	can	apply	a	Generalized	Linear	Model	
(GLM).		(Homework	or	exam	problem?)	

•  Lots	of	known	distribu-ons	are	exponen-al	families.	
•  Here,	we	will	describe	a	method	for	construc-ng	GLM	
models	for	problems	such	as	these.	

(Reading	assignment)	



Assump'ons	for	Generalized	Linear	Models		
•  In	generally,	consider	a	classifica-on	or	regression	problem	

where	we	would	like	to	predict	the	value	of	some	random	
variable	y	as	a	func-on	of	x.		

•  To	derive	a	GLM	for	this	problem,	we	will	make	the	following	
three	assump-ons	about	the	condi-onal	distribu-on	of	y	given	x	
and	about	our	model:		

•  1.	y	|	x;	θ	∼	Exponen'al	Family(η).	I.e.,	given	x	and	θ,	the	
distribu-on	of	y	follows	some	exponen-al	family	distribu-on,	
with	parameter	η.		

•  2.	Given	x,	our	goal	is	to	predict	the	expected	value	of	T(y)	given	
x.	Since	oren	T(y)	=	y,	so	this	means	we	would	like	the	predic-on	
h(x)	output	by	our	learned	hypothesis	h	to	sa'sfy	h(x)	=	E[y|x].	
(Note	that	this	assump-on	is	sa-sfied	in	the	choices	for	hθ(x)	for	
both	logis-c	regression	and	linear	regression.	For	instance,	in	
logis-c	regression,	we	had		

hθ(x)	=	p(y	=	1|x;	θ)	=	0	·	p(y	=	0|x;	θ)	+	1	·	p(y	=	1|x;	θ)	=	E[y|x;	θ].)		
•  3.	The	natural	parameter	η	and	the	inputs	x	are	related	linearly:	

η	=	θ	T	x.	(Or,	if	η	is	vector-valued,	then	ηi	=	θ	i	T	x.)	



Examples:	Least	square	and	Logis-c	
regression	are	GLM	family	of	models	

Given	that	y	is	binary-valued,	it	therefore	
seems	natural	to	choose	the	Bernoulli	
family	of	distribu-ons	to	model	the	
condi-onal	distribu-on	of	y	given	x.	In	our	
formula-on	of	the	Bernoulli	distribu-on	as	
an	exponen-al	family	distribu-on,	we	had	
φ	=	1/(1	+	e	−η	).	Furthermore,	note	that	if	
y|x;	θ	∼	Bernoulli(φ),	then	E[y|x;	θ]	=	φ.	



Sormax	Regression	

•  Let’s	look	at	another	example	of	a	GLM.	Consider	a	
classifica-on	problem	in	which	the	response	variable	y	
∈	{1,	2,	.	.	.	,	k}.		

•  For	example,	rather	than	classifying	email	into	the	two	
classes	spam	or	not-spam—which	would	have	been	a	
binary	classifica-on	problem—	this	-me	we	want	to	
classify	it	into	four	classes,	such	as	spam,	family-mail,	
friends-mail,	and	work-related	mail.	The	response	
variable	is	s-ll	discrete,	but	can	now	take	on	more	than	
two	values.	We	will	thus	model	it	as	distributed	
according	to	a	mul-nomial	distribu-on.	



Details	of	Sormax	Regression	

•  Work	out	details	with	the	students	on	the	
board.	



Today	we	also	learn:	

Schur	Complement	
•  This	is	related	how	we	triage	data	and	solve	a	
smaller	problem	involving	big	data	first.	
–  Smaller	system	to	solve	
–  Smaller	matrix	to	invert	
–  The	process	can	be	iterated	to	make	the	problem	to	a	
smaller	and	smaller	size.		(This	is	very	powerful	for	
dealing	with	big	data.		This	is	one	of	the	dimension	
reduc-on	methods.)	

•  It	is	also	very	important	for	study	the	Condi-onal	
Gaussian	distribu-on.	

•  Work	out	details	with	the	students	on	the	board.	



What	is	a	condi'onal	distribu'on?	

•  A	condi-onal	distribu-on	is	a	probability	
distribu-on	for	a	sub-popula-on.		

•  In	other	words,	it	shows	the	probability	that	a	
randomly	selected	item	in	a	sub-popula-on	
has	a	characteris-c	you’re	interested	in.		

•  For	example,	if	you	are	studying	eye	colors	
(the	popula-on)	you	might	want	to	know	how	
many	people	have	blue	eyes	(the	sub-
popula-on).		



Condi'onal	Distribu'on	
Discrete	example	

e.g. We restrict to only on Blue eyes, the 
conditional distribution is Male:15 and Femaie:5 .  
This is called a conditional distribution.




Condi'onal	Distribu'on	(con'nuous)	
Later!	



Back	up	slides	



Note:	Polynomial	data	fimng	is	also	a	linear	model,	
also	will	be	resulted	in	the	normal	equa'on	

We	always	get	the	
same	normal	
equa-on!		

Same geometric argument works to 
get the normal equation!



When	we	have	polynomials	with	mul--variables,	the	size	of	the	XTX	can	be	very	large.	


