Mathematics of Big Data, |
Lecture 4: PCA and Dim Reduction,
Spectral Decomposition, SVD, Generative
Learning Algorithm, and Gaussian
Discriminant Analysis

Weiqing Gu
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College
Summer 2017

@2017 by Weiging Gu. All rights reserved

Today’s topics

* PCA and Dimensionality Reduction

* Spectral Decomposition

* Principal Component Analysis (PCA)
* Singular Value Decomposition (SVD)
* Generative Learning Algorithms

* Gaussian Discriminant Analysis

e Cholesky decomposition only if time permits
(otherwise as reading materials.)

Principal Component Analysis (PCA)
An intuitive example

What kind of geometric curve will
include almost all the data above?

Degree of Data Variation in different
directions

Similarly in Higher Dimensional

- |::'._
" %
=SS 7y
E, r
100+

Body Length (mm)

All the data can be projected to
1-dimensional line!

Dimension Reduction

Almost all of the variation in the data is
from left to right

% s o %

2-D

1-D
If we flattened the data (removed the

up/down variation), it wouldn’t look
much different.

The number of principal components is less than or equal to the number of original variables.

Need to Identify the Rotation Matrix

Cell 2 - g
Read Counts - -

Cell 1

Key: How to find this orthogonal transformation - - - -
i.e. the orthogonal matrix? . 1

-

Use orthogonal eigenvectors of the covariance matrix
of the data as columns of this rotation matrix!

Geometrically, we want to find two axis directions of
the elliptic curve. They are called principal axes.

How?

Note: the x-value and y-value of the data
are correlated.

Their correlation are reflected by

the covariance matrix of the data.

Principal component analysis (PCA) is a
procedure to find an orthogonal
transformation to convert a set of
observations of possibly correlated variables
into a set of values of linearly uncorrelated.
Procedure of find the principal directions:
Step 1: Find the covariance matrix of the data
directly (Note: one can first standardize data:

* Find the mean y, of the x-value & the
mean L, of the y-value.

* Subtract all x-value by p, and subtract all
y-value by p, Geometrically, move the x-
axis and y-axis to the data center.)

Step 2: Find eigenvalues and eigenvectors of
the covariance matrix of the data.

Step 3: Order the eigenvalues from largest to
smallest. The eigenvector corresponding to
the largest eigenvalue is called the 1°t
principal axis. So on and so forth.

Step 4: Form the rotation matrix using the
corresponding eigenvectors.

Recall Covariance Matrix

* The covariance between two rv's X and Y measures
the degree to which X and Y are (linearly) related;

defined as
cov[X,Y] & E[(X-E[X (Y—E%XY])]

you standardize the data
rst, then it is equivalent to

=K [XY] — K [X] E [Y] change coordinates to

make them to O.

If x is a d-dimensional random vector, its covariance matrix is
defined to be the following symmetric, positive definite matrix:

Exercise

covlx] 2 E|(x—E[x)(x-E[x)"

f / var [X1] cov [X1,Xs] --- cov [Xl,Xd]\
g¥€; denoted | cov [X2, X1] var [X 2] -+ cov|[Xa, X4
J 4 — . : .
\cov [.X:d,Xl] cov [Xg, Xa] --- var [X 4] /

correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two

rvs X and Y is defined as
corr [X,Y] &

cov [X,Y]

If Xand Y are \/V&I‘ [X] var [Y]

indep., then cov [X,Y] =0; say X and Y are uncorrelated.

e A correlation matrix of a random vector has the form:

/COI‘I‘ [Xl,Xl] COIrr [Xl, Xg]
R: . .

\corr [Xg, X;] corr [Xg, Xo]

corr [X1, Xd]\

COIT [Xd, Xd]/

Exercise: show that —1 € corr [X, ¥] € 1 and
Show that corr[X,Y] = 1 Yf ¥ = aX +b for some parameters a and b.

Why do some people use XX for PCA?
And others just use data matrix X instead?
Recall: cov(X,Y) = E [(X — E[X])(Y — E[Y])]

If each variable has a finite set of equal-probability
values, x.and y, respectively for | = 1,...,n, then the covariance can be
equivalently written in terms of the means E(X) and E(Y) as

1 n

cov(X,Y) = — > (@i — B(X))(y: — B(Y)).

i=1

If the data is standardized, then E(X) =E(y) = 0, then
cov(X, Y) = (1/n) X'Y.

The covariance matrix will be (1/n)XX.

Eigenvalues of (1/n) X™X will be just certain uniform scale of X"X. It
would not affect the ascent order the eigenvalues if people use X'X.

If one uses the data matrix X directly, then one has to do a SVD. For
details, see SVD next. (X =USVT, and X" X =VDVT, So V is the one.)

Recall for the normal equation, we
want to find

(XTX)

to solve for O
f=(X"X)"'X"y

If we write XX = P'DP (i.e. the spectral
decomposition), where P is orthogonal,
i.e. P'=PT. Then (X'X)! = P'D'P. Dtis
very east to calculate.

Principal Component Analysis (PCA) has a
lots of applications in Biotechnology.

c K562 NPC
190p ® HLEO ® GW16
Blood cells ® 2339 ¥ GW21
100 ’ GW21+3
v $0”..’ :...‘\' o o ® Kera @ hiPSC
50 o - ’ 0. .‘ e (o
- . X BJ
L
Pluripotent cells ’ 2338
N 2 : phed
8 O i ..’.o‘. o® C o e,
- ' . “““ : o ..\0 -
50 b . O?z:o ». v _
= 7 ~ Neural cells
A
A
_1w - -
Dermal or epidermal cells
-150 1 1 A A 1 A 1 J
-150 -100 -50 0 50 100 150 200 250
PC1

Pollen et al. Nature Biotechnology 201

Singular Value Decomposition (SVD)
What is SVD?

It is a generalization of the notion of eigenvectors from
square matrices to any kind of matrix.

If A'is a diagonalizable square matrix, then A =PDP*
If A is symmetric, then A =PDP"™ Where P'=P-1(i.e. PPT=l)

Here, D = diagonal matrix with eigenvalues on the diagonal
And P =Each columnis the corresponding eigenvector

X =(rea|) N x D matrix, then The columns of U are called the left
T singular vectors, and
X = U S Vv the columns of V are called the right

N x D NxN NxD DxD singular vectors.

U=NxN orthogonal matrix. i.e. UTU= UTU=I

V=DxD orthogonal matrix. i.e. VTV =VVT =), and

S = N x D matrix containing the r = min(N,D) singular values ¢' > 0
on the main diagonal, with Os filling the rest of the matrix.

How to decompose X?
What are the singular values?

* Since X'X is symmetric, so there exist an orthogonal
matrix V such that

X" X =VDVT, where V = evec(X" X)
%é\\ekgnvectors
e But XX'"is also symmetric, so there exist

an orthogonal matrix U such that
XT X =UD,UT, where U= evec(XXT).

* How D and D, are related? Claim: XX" and X"X have
the same nonzero eigenvalues!

— Let eval(XX")= the set of non zero eigenvalues of XX'

— and eval(X" X) =the set of non zero eigenvalues of X' X, we
can show eval(XX") = eval(XT X).

Theorem: XXT and X' X have the same
none zero eigenvalues.

That is to show eval(XXT") = eval(XT X).
Work out details with the students on the board.

Now you order the eigenvalues of XXT, in the same way as you
order the eigenvalues of X" X in an ascent order. Since all the
eigenvalues are >0, then following the non zero eigenvalues there
should be all zero eigenvalues.

Now you find the U with the column putting eigenvectors
corresponding to the ordered eigenvalues. Then U will be unique.

Now X = VDVT=VD¥2D/2y, we want to stick the U in the middle.
But U is NxN. We have to be careful to make the dimension match.
So we change D¥2to S = N x D matrix containing the r = min(N,D)
singular values o' 2 0, where o'is the sqaure root the corresponding
eigenvalue. Then stick U'U, which is an identity matrix, in the
middle. Please see the figure on the next slide.

adAsS 10} uoneindwiod 3ALRIIYH]

D D N —-D D D
/ o
/ D
N _ D
% %
X — U S VT
(a)
D L
01_) L
N ~
X o~ U, Sy
(b)

Figure 12.8 (a) SVD decomposition of non-square matrices X = USV”. The shaded parts of S, and all
the off-diagonal terms, are zero. The shaded entries in U and S are not computed in the economy-sized
version, since they are not needed. (b) Truncated SVD approximation of rank L.

Application: SVD as a
dimension-reduction technique

 Example: Data
compression

/6 e Rank the
eigenvalues in
descent order. Set
all the small

,‘ _r eigenvalues

A | (equivalently

singular values) to

zero, you will
compress the data.

The error in this approximationis ||X — |F ~ o1

X ~ | U; S Vi

10

=== Original
= = = randomized

1 L L | 1 L | |
0 10 20 30 40 50 60 70 80 90 100

12.10 First 50 log singular values for the clown image (solid red line), and for a data
d by randomly shuftling the pixels (dotted green line). Figure generated by svdImageDemo.

Consider the 200 x 320 pixel image. This has 64,000 numbers in it. We see that a rank 20
approximation, with only (200 + 320 + 1) x 20 = 10, 420 numbers is a very good approximation.

rank 200 rank 2

BT

(@) (b)

rank 5 rank 20

© d

Rank = 20 means setting all o, = 0 for L>21. Error is about 0,,
Figure 12.9 Low rank approximations to an image. Top left: The original image is of size 200 x 320, so
has rank 200. Subsequent images have ranks 2, 5, and 20. Figure generated by svdImageDemo.

Data Compression

* |If your boss wants to compress a data set, you
may ask him/her what would be the threshold of
an error acceptable. (Since naturally,
compressing data will loss information, it is
reasonable to ask the threshold of an acceptable
error.)

* |f your boss say 5%, you perform an SVD on your
data, and find the singular value o, Say L = 30,
which is close to 5% and then set all o, =0 for
L>31. You know after the data compress, your
error is about o;, which is about 5%.

x =| U S Vi

This sizes of those matrices are much smaller.

Changing gear:
Generative learning Algorithm

e Work out details with the students on the
board.

A Different Approach, called
Generative Leaning Algorithm

* First, looking at cats, we can build a model of
what cats look like.

* Then, looking at dogs, we can build a separate
model of what dogs look like.

* Finally, to classify a new animal, we can match
the new animal against the cat model, and match
it against the dog model, to see whether the new
animal looks more like the cats or more like the
dogs we had seen in the training set.

Gaussian Discriminant Analysis (GDA) Model

e Work out details with the students on the
board.

* Change gear to techniques to design
algorithm for fast computation.

* (Only if time permits. Otherwise, please read
the following slides instead.)

Recall we studied earlier:
Computational Techniques such as
gradient descent and Newton’s method

* For big data, the closed formula involving find
inverse a huge matrix, it may not be the
fastest or most stable way.

 Other Computational methods used:

— Cholesky decomposition
— Gradient descent
— Stochastic gradient descent

— Newton’s method

How to make the computation fast?
Cholesky Decomposition

Theorem: IfAi1sanxn real, symmetric and
positive definite matrix then there exists a
unique lower triangular matrix G with positive

diagonal element such that

A = GG

Proof: Work out details with the students on the
board.

Recall: If A is an upper triangular matrix, then
AX = b can be solved by backward substitution.

Upper Triangular Matrix:

[ayy dip a1z ... dip 17T X1] T bl) i (111 0 0 0o 17 X1] [bl]
0 aryy dryz3 ... dyy X7 Z)p_ (21 darz 0 S0 0 Xo bg
0 0 aszzy ... dizp X3 = Z)3 adz1 dzz diz ... 0 X3 — b_;
Y 0 0 ... awm | | Xa | i by i | n1 dp2 dpz ... mn | | Xn | L b]

Backward stitution

;= (b; — Zj | 437X i
X; = (b; — Z;=f+1 (5.%;) [G

Similarly when A is lower triangular.

If A =LU, then Ax=Db can be solved

quickly.
Then Ax = b can be written as
LUx =b
Let y = Ux

Then Ly = b, solve y first
Then use Ux =y to solve for x.

Another way to find Cholesky

decomposition

Another way to find out the cholesky decomposition

Suppose

We need to solve
the equation

a, ap a,
a, dy a,,
_anl anZ ann
. ap
a a)
2 Ay
A=
_anl an2

111 0 111 lzl ' lnl -
lzl 122 0 122 ' ln2
l 1 ln2 0 lnn

30

Example of find Cholesky
Decomposition

Suppose 4 2 =2 For k from 1 tO n 12
A=|2 10 2‘ Q))
[,
-2 2 5 E
For] rom k+1 to n l k-ll Yy
Then Cholesky Decomposition e = G T 2 it | [Pk
Entry General formula Output
1, \/Z 2
121 a21 /le 1
l5 asl/ln -1
122 VA _1221 3
132 (a32 _121131)/122 1
133 V33 _1321 _1322 \/5
Now,
2 0 0
L=|1 3 0
-1 1 3 31

The third way to do Cholesky
decomposition

o ,wherePis <« Work out more
an orthogonal details with the
matrix. (Why?) students on the

board.

* Note: This is a relatively expensive
method if you want fo use deferminant
fo find eigenvalues.

Here are some R code to find Cholesky

« cl<-chol(x)

B! 0 O]

/21 0

-1/2 1/3 1

and

S O B

If we Decompose A as LDL” then

S O O

Decomposition

* x<-matrix(c(4,2,-2, 2,10,2, -2,2,5), ncol=3, nrow=3)

w O O

33

Applications of Cholesky
Decomposition

* We use Cholesky Decomposition to solve the system
of linear equation Ax=b, where A 1s real symmetric
and positive definite.

* In regression analysis, we also use it to estimate the
parameter if XX is positive definite.

* In Kernel principal component analysis, we also need
to use Cholesky decomposition. (Wetlya Shi; Yue-Feil
Guo; 2010)

34

