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Today’s	topics	
•  PCA	and	Dimensionality	Reduc-on		
•  Spectral	Decomposi-on	
•  Principal	Component	Analysis	(PCA)	
•  Singular	Value	Decomposi-on	(SVD)		
• Genera-ve	Learning	Algorithms	
• Gaussian	Discriminant	Analysis	
•  Cholesky	decomposi-on	only	if	-me	permits	
(otherwise	as	reading	materials.)	



What	kind	of	geometric	curve	will	
include	almost	all	the	data	above?	

Principal	Component	Analysis	(PCA)	
An	intui've	example	



Degree	of	Data	Varia'on	in	different	
direc'ons	



Similarly	in	Higher	Dimensional	

All	the	data	can	be	projected	to	
1-dimensional	line!	



Dimension	Reduc'on	

2-D	

1-D	

The	number	of	principal	components	is	less	than	or	equal	to	the	number	of	original	variables.	



Need	to	Iden'fy	the	Rota'on	Matrix	

Key:		How	to	find	this	orthogonal	transforma-on		
i.e.	the	orthogonal	matrix?	
	

Use	orthogonal	eigenvectors	of	the	covariance	matrix		
of	the	data	as	columns	of	this	rota:on	matrix!	
	



Geometrically,	we	want	to	find	two	axis	direc-ons	of	
the	ellip-c	curve.		They	are	called	principal	axes.	

Note:	the	x-value	and	y-value	of	the	data		
are	correlated.			
Their	correla-on	are	reflected	by		
the	covariance	matrix	of	the	data.	

How?	

	
•  Principal	component	analysis	(PCA)	is	a	

procedure	to	find	an	orthogonal	
transforma-on	to	convert	a	set	of	
observa-ons	of	possibly	correlated	variables	
into	a	set	of	values	of	linearly	uncorrelated.		

•  Procedure	of	find	the	principal	direc'ons:	
•  Step	1:	Find	the	covariance	matrix	of	the	data	

directly	(Note:	one	can	first	standardize	data:	
•  Find	the	mean	µ1	of	the	x-value	&	the	

mean	µ2	of	the	y-value.		
•  Subtract	all	x-value	by	µ1	and	subtract	all	

y-value	by	µ2.		Geometrically,	move	the	x-
axis	and	y-axis	to	the	data	center.)	

•  Step	2:	Find	eigenvalues	and	eigenvectors	of	
the	covariance	matrix	of	the	data.		

•  Step	3:	Order	the	eigenvalues	from	largest	to	
smallest.		The	eigenvector	corresponding	to	
the	largest	eigenvalue	is	called	the	1st	
principal	axis.		So	on	and	so	forth.	

•  Step	4:	Form	the	rota-on	matrix	using	the	
corresponding	eigenvectors.	

	



	
	

Recall	Covariance	Matrix	
	
	•  The	covariance	between	two	rv’s	X	and	Y	measures	

the	degree	to	which	X	and	Y	are	(linearly)	related;	
defined	as	

Exercise	

	
If	x	is	a	d-dimensional	random	vector,	its	covariance	matrix	is	
defined	to	be	the	following	symmetric,	posi-ve	definite	matrix:	

Ofen denoted  
by ∑  
 

If	you	standardize	the	data	
first,	then	it	is	equivalent	to	
change	coordinates	to	
make	them	to	0.	



correla'on	coefficient	&	correla'on	matrix		
	•  The	(Pearson)	correla'on	coefficient	between	two	

rvs	X	and	Y	is	defined	as		

•  If	X	and	Y	are		
						indep.,	then	cov	[X,	Y	]	=	0;	say	X	and	Y	are	uncorrelated.		

	
	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 

•  A	correla'on	matrix	of	a	random	vector	has	the	form:	

Exercise: show that −1 ≤ corr [X, Y ] ≤ 1 and 
Show that corr[X,Y] = 1 iff Y = aX +b for some parameters a and b.  
 



Why	do	some	people	use	XXT	for	PCA?		
And	others	just	use	data	matrix		X	instead?		

	Recall:	
If	each	variable	has	a	finite	set	of	equal-probability	
values,	xi	and	yi	respec-vely	for	I	=	1,…,n,	then	the	covariance	can	be	
equivalently	wriken	in	terms	of	the	means	E(X)		and	E(Y)	as	
	
	
If	the	data	is	standardized,	then	E(X)	=E(y)	=	0,	then		
													cov(X,	Y)	=	(1/n)	XTY.		
The	covariance	matrix	will	be	(1/n)XTX.		
Eigenvalues	of	(1/n)	XTX	will	be	just	certain	uniform	scale	of	XTX.		It	
would	not	affect	the	ascent	order	the	eigenvalues	if	people	use	XTX.	
If	one	uses	the	data	matrix	X	directly,	then	one	has	to	do	a	SVD.	For	
details,	see	SVD	next.		(X	=	USVT,	and	XT	X	=	VDVT,	So	V	is	the	one.)	



Recall	for	the	normal	equa-on,	we	
want	to	find		

to	solve	for		

If	we	write	XTX	=	PTDP	(i.e.	the	spectral		
decomposi-on),	where	P	is	orthogonal,	
i.e.	P-1=PT.		Then	(XTX)-1	=	PTD-1P.	D-1	is		
very	east	to	calculate.		



Principal	Component	Analysis	(PCA)	has	a	
lots	of	applica-ons	in	Biotechnology.	



Singular	Value	Decomposi'on	(SVD)		
	•  What	is	SVD?		

•  It	is	a	generaliza-on	of	the	no-on	of	eigenvectors	from	
square	matrices	to	any	kind	of	matrix.		

•  If	A	is	a	diagonalizable	square	matrix,	then		A	=	PDP-1.			

•  If	A	is	symmetric,	then	A	=	PDPT.		Where	PT=P-1	(i.e.	PPT	=I)		

•  X	=(real)	N	×	D	matrix,	then	

	

Here,	D	=	diagonal	matrix	with	eigenvalues	on	the	diagonal		
And				P	=	Each	column	is		the	corresponding	eigenvector	
	

U=N×N	orthogonal	matrix.	i.e.	UTU=	UTU=I	
V=D×D	orthogonal	matrix.	i.e.	VT	V	=	VVT	=	I),	and	
S	=	N	×	D	matrix	containing	the	r	=	min(N,D)	singular	values	σi	≥	0		
on	the	main	diagonal,	with	0s	filling	the	rest	of	the	matrix.	
	
	

The	columns	of	U	are	called	the	le<	
singular	vectors,	and	
	the	columns	of	V	are	called	the	right	
singular	vectors.		
	



How	to	decompose	X?	
What	are	the	singular	values?	

•  Since	XTX	is	symmetric,	so	there	exist	an	orthogonal	
matrix	V	such	that		

				XT	X	=	VDVT,	where	V	=	evec(XT	X)		
	
•  But	XXT	is	also	symmetric,	so	there	exist		
			an	orthogonal	matrix	U	such	that		
				XT	X	=	UD1UT,	where	U=	evec(XXT).		
	
•  How	D	and	D1	are	related?			Claim:	XXT		and	XTX	have	
the	same		nonzero	eigenvalues!	
–  Let		eval(XXT	)=	the	set	of	non	zero	eigenvalues	of	XXT		
–  and	eval(XT	X)	=the	set	of	non	zero	eigenvalues	of	XT	X,	we	
can	show			eval(XXT)	=	eval(XT	X).	

	

eigenvectors	



Theorem: XXT and XT X have the same 
none zero eigenvalues. 

 
 •  That	is	to	show	eval(XXT)	=	eval(XT	X).	

•  Work	out	details	with	the	students	on	the	board.	
•  Now	you	order	the	eigenvalues	of	XXT,	in	the	same	way	as	you	

order	the	eigenvalues	of	XT	X	in	an	ascent	order.		Since	all	the	
eigenvalues	are	≥0,	then	following	the	non	zero	eigenvalues	there	
should	be	all	zero	eigenvalues.	

•  Now	you	find	the	U	with	the	column	pusng	eigenvectors	
corresponding	to	the	ordered	eigenvalues.		Then	U	will	be	unique.	

•  Now	X	=	VDVT	=VD1/2D1/2V,	we	want	to	s-ck	the	U	in	the	middle.		
But	U	is	NxN.		We	have	to	be	careful	to	make	the	dimension	match.		
So	we	change	D1/2	to	S	=	N	×	D	matrix	containing	the	r	=	min(N,D)	
singular	values	σi	≥	0,	where	σi	is	the	sqaure	root	the	corresponding	
eigenvalue.	Then	s-ck	UTU,	which	is	an	iden-ty	matrix,	in	the	
middle.		Please	see	the	figure	on	the	next	slide.	

	



Effec've	com
puta'on	for	SVD	



Applica'on:		SVD	as	a		
dimension-reduc'on	technique	

•  Example:		Data	
compression	

•  Rank	the	
eigenvalues	in	
descent	order.		Set		
all	the	small	
eigenvalues	
(equivalently	
singular	values)	to	
zero,	you	will	
compress	the	data.		

The	error	in	this	approxima-on	is	





Consider	the	200	×	320	pixel	image.	This	has	64,000	numbers	in	it.	We	see	that	a	rank	20	
approxima-on,	with	only	(200	+	320	+	1)	×	20	=	10,	420	numbers	is	a	very	good	approxima-on.		
	

Rank	=	20	means	sesng	all	σL	=	0	for		L≥21.		Error	is	about	σ21.		
	
		



Data	Compression	
•  If	your	boss	wants	to	compress	a	data	set,	you	
may	ask	him/her	what	would	be	the	threshold	of	
an	error	acceptable.	(Since	naturally,	
compressing	data	will	loss	informa-on,	it	is	
reasonable	to	ask	the	threshold	of	an	acceptable	
error.)	

•  If	your	boss	say	5%,	you	perform	an	SVD	on	your	
data,	and	find	the	singular	value	σL,	Say	L	=	30,		
which	is	close	to	5%		and	then	set	all	σL	=	0	for		
L≥31.		You	know	axer	the	data	compress,	your	
error	is	about	σ31	which	is	about	5%.			

This	sizes	of	those	matrices	are	much	smaller.	



Changing	gear:	
Genera've	learning	Algorithm	

•  Work	out	details	with	the	students	on	the	
board.	



A	Different	Approach,	called		
Genera've	Leaning	Algorithm	
•  First,	looking	at	cats,	we	can	build	a	model	of	
what	cats	look	like.		

•  Then,	looking	at	dogs,	we	can	build	a	separate	
model	of	what	dogs	look	like.		

•  Finally,	to	classify	a	new	animal,	we	can	match	
the	new	animal	against	the	cat	model,	and	match	
it	against	the	dog	model,	to	see	whether	the	new	
animal	looks	more	like	the	cats	or	more	like	the	
dogs	we	had	seen	in	the	training	set.	



Gaussian	Discriminant	Analysis	(GDA)	Model	

•  Work	out	details	with	the	students	on	the	
board.	

	



•  Change	gear	to	techniques	to	design	
algorithm	for	fast	computa'on.	

•  (Only	if	-me	permits.		Otherwise,	please	read	
the	following	slides	instead.)	



Recall	we	studied	earlier:	
Computa'onal	Techniques	such	as	

gradient	descent	and	Newton’s	method	

•  For	big	data,	the	closed	formula	involving	find	
inverse	a	huge	matrix,	it	may	not	be	the	
fastest	or	most	stable	way.	

•  Other	Computa-onal	methods	used:	
– Cholesky	decomposi-on	
– Gradient	descent	
– Stochas-c	gradient	descent	
– Newton’s	method	
	



How to make the computation fast?
Cholesky Decomposition	

Theorem:   If A is a n×n  real, symmetric and 
positive definite matrix then there exists a 
unique lower triangular matrix G with positive 
diagonal element such that        

A = GGT.             
      
Proof:  Work out details with the students on the 

board. 	



Recall:	If	A	is	an	upper	triangular	matrix,	then		
AX	=	b	can	be	solved	by	backward	subs'tu'on.		

Upper Triangular Matrix: 

Backward substitution 
	

Similarly	when	A	is	lower	triangular.	



If	A	=	LU,	then	Ax	=	b	can	be	solved	
quickly.	

•  Then	Ax	=	b	can	be	wriken	as	
•  LUx	=b	
•  Let	y	=	Ux	
•  Then	Ly	=	b,	solve	y	first	
•  Then	use	Ux	=	y	to	solve	for	x.	
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Another way to find out the cholesky decomposition  
Suppose                               
 
 
 
We need to solve 
 the equation  
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Another	way	to	find	Cholesky	
decomposi-on			
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Suppose 
 
 
Then Cholesky Decomposition  
 
 
 
 
 
 
Now, 
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Example	of	find	Cholesky	
Decomposi'on	



The	third	way	to	do	Cholesky	
decomposi-on	

•  PAPT	=	D,	where	P	is	
an	orthogonal	
matrix.		(Why?)	

•  Work	out	more	
details	with	the	
students	on	the	
board.	

•  Note: This is a relatively expensive 
method if you want to use determinant 
to find eigenvalues.
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•  x<-matrix(c(4,2,-2, 2,10,2, -2,2,5), ncol=3, nrow=3) 
•  cl<-chol(x) 

•  If we Decompose A as LDLT then 

                       and  
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Here	are	some	R	code	to	find	Cholesky	
Decomposi-on	



34 

•  We use Cholesky Decomposition to solve the system 
of linear equation Ax=b, where A is real symmetric 
and positive definite.  

     
•  In regression analysis, we also use it to estimate the 

parameter if XTX is positive definite. 

•  In Kernel principal component analysis, we also need 
to use Cholesky decomposition. (Weiya Shi; Yue-Fei 
Guo; 2010) 

 
 

Applica'ons	of	Cholesky	
Decomposi'on	


