Mathematics of Big Data, I Lecture 4: PCA and Dim Reduction, Spectral Decomposition, SVD, Generative Learning Algorithm, and Gaussian Discriminant Analysis

Weiqing Gu

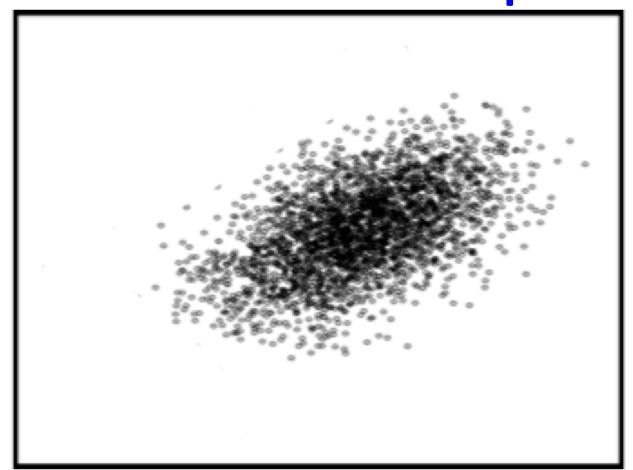
Professor of Mathematics
Director of the Mathematics Clinic

Harvey Mudd College Summer 2017

Today's topics

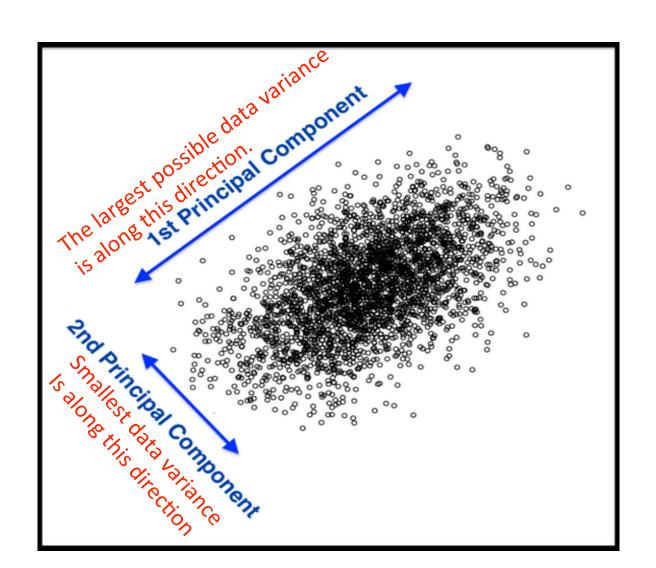
- PCA and Dimensionality Reduction
- Spectral Decomposition
- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Generative Learning Algorithms
- Gaussian Discriminant Analysis
- Cholesky decomposition only if time permits (otherwise as reading materials.)

Principal Component Analysis (PCA) An intuitive example



What kind of geometric curve will include almost all the data above?

Degree of Data Variation in different directions

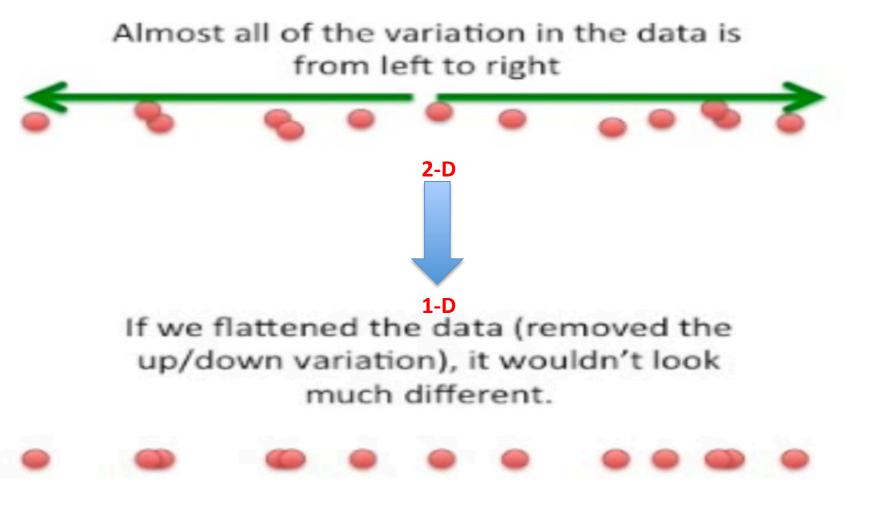


Similarly in Higher Dimensional



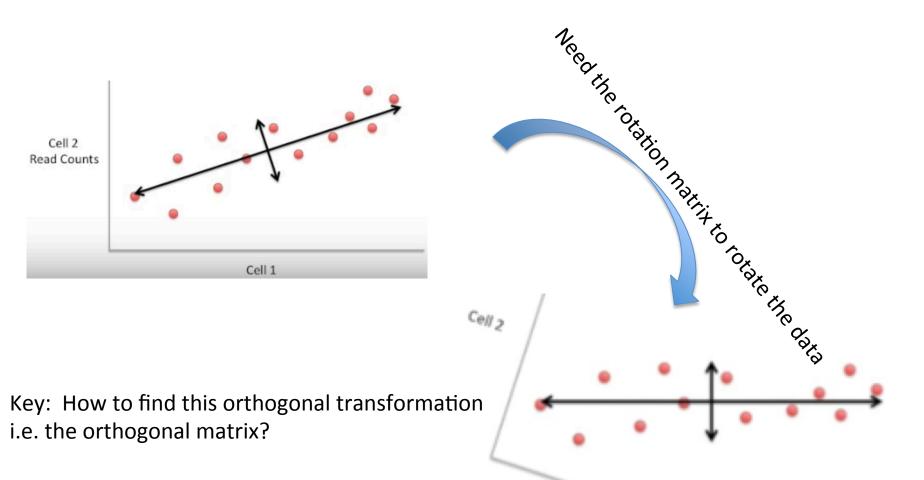
All the data can be projected to 1-dimensional line!

Dimension Reduction



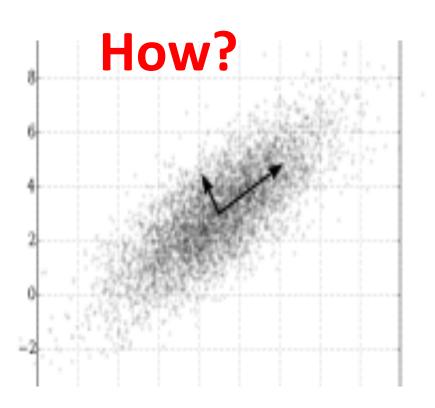
The number of principal components is less than or equal to the number of original variables.

Need to Identify the Rotation Matrix



Use orthogonal eigenvectors of the covariance matrix of the data as columns of this rotation matrix!

Geometrically, we want to find two axis directions of the elliptic curve. They are called **principal axes**.



Note: the x-value and y-value of the data are correlated.

Their correlation are reflected by the covariance matrix of the data.

- Principal component analysis (PCA) is a
 procedure to find an orthogonal
 transformation to convert a set of
 observations of possibly correlated variables
 into a set of values of linearly uncorrelated.
- Procedure of find the principal directions:
- Step 1: Find the covariance matrix of the data directly (Note: one can first standardize data:
 - Find the mean μ_1 of the x-value & the mean μ_2 of the y-value.
 - Subtract all x-value by μ_1 and subtract all y-value by μ_2 . Geometrically, move the x-axis and y-axis to the data center.)
- Step 2: Find eigenvalues and eigenvectors of the covariance matrix of the data.
- Step 3: Order the eigenvalues from largest to smallest. The eigenvector corresponding to the largest eigenvalue is called the 1st principal axis. So on and so forth.
- Step 4: Form the rotation matrix using the corresponding eigenvectors.

Recall Covariance Matrix

 The covariance between two rv's X and Y measures the degree to which X and Y are (linearly) related; defined as

If **x** is a d-dimensional random vector, its **covariance matrix** is defined to be the following symmetric, positive definite matrix:

$$\begin{array}{lll} \operatorname{cov}\left[\mathbf{x}\right] & \triangleq & \mathbb{E}\left[(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right])(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right])^T\right] \\ \text{Ofen denoted} \\ \operatorname{by} \Sigma & = & \begin{pmatrix} \operatorname{var}\left[X_1\right] & \operatorname{cov}\left[X_1, X_2\right] & \cdots & \operatorname{cov}\left[X_1, X_d\right] \\ \operatorname{cov}\left[X_2, X_1\right] & \operatorname{var}\left[X_2\right] & \cdots & \operatorname{cov}\left[X_2, X_d\right] \\ & \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}\left[X_d, X_1\right] & \operatorname{cov}\left[X_d, X_2\right] & \cdots & \operatorname{var}\left[X_d\right] \end{pmatrix} \end{array}$$

correlation coefficient & correlation matrix

 The (Pearson) correlation coefficient between two rvs X and Y is defined as

$$\operatorname{corr}\left[X,Y\right] \triangleq \frac{\operatorname{cov}\left[X,Y\right]}{\sqrt{\operatorname{var}\left[X\right]\operatorname{var}\left[Y\right]}}$$

- indep., then cov [X, Y] = 0; say X and Y are uncorrelated.
- A correlation matrix of a random vector has the form:

$$\mathbf{R} = \begin{pmatrix} \operatorname{corr}\left[X_{1}, X_{1}\right] & \operatorname{corr}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{1}, X_{d}\right] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr}\left[X_{d}, X_{1}\right] & \operatorname{corr}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{corr}\left[X_{d}, X_{d}\right] \end{pmatrix}$$

Exercise: show that $-1 \le corr[X, Y] \le 1$ and show that corr[X,Y] = 1 iff Y = aX + b for some parameters a and b.

Why do some people use XX^T for PCA? And others just use data matrix X instead?

Recall: $\operatorname{cov}(X,Y) = \operatorname{E}\left[(X - \operatorname{E}[X])(Y - \operatorname{E}[Y])\right]$

If each variable has a finite set of equal-probability values, x_i and y_i respectively for I = 1,...,n, then the covariance can be equivalently written in terms of the means E(X) and E(Y) as

$$\operatorname{cov}(X,Y) = rac{1}{n} \sum_{i=1}^n (x_i - E(X))(y_i - E(Y)).$$

If the data is standardized, then E(X) = E(y) = 0, then $cov(X, Y) = (1/n) X^{T}Y$.

The covariance matrix will be $(1/n)X^TX$.

Eigenvalues of $(1/n) X^T X$ will be just certain uniform scale of $X^T X$. It would not affect the ascent order the eigenvalues if people use $X^T X$.

If one uses the data matrix **X** directly, then one has to do a SVD. For details, see SVD next. ($X = USV^T$, and $X^T X = VDV^T$, So V is the one.)

Recall for the normal equation, we want to find

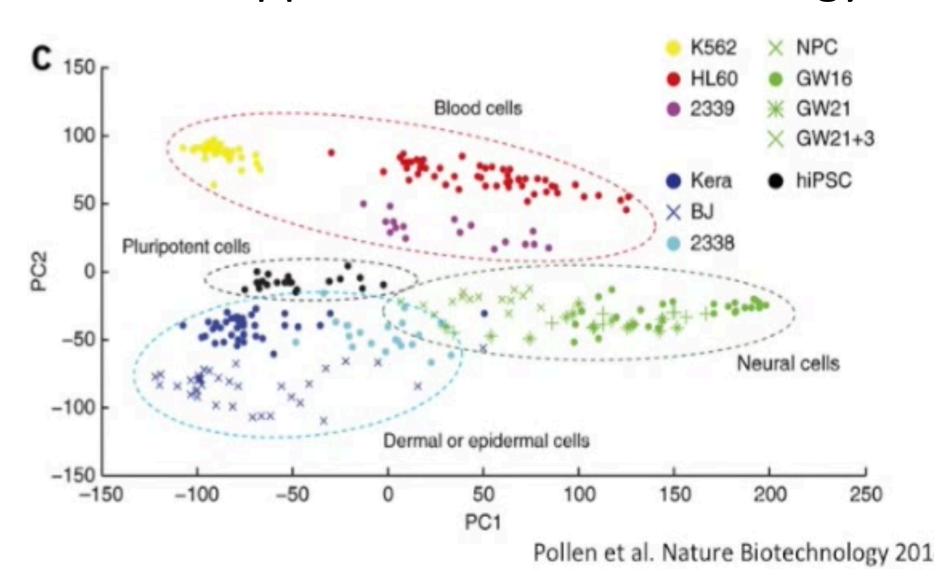
$$(X^{T}X)^{-1}$$

to solve for heta

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

If we write $X^TX = P^TDP$ (i.e. the spectral decomposition), where P is orthogonal, i.e. $P^{-1}=P^T$. Then $(X^TX)^{-1}=P^TD^{-1}P$. D^{-1} is very east to calculate.

Principal Component Analysis (PCA) has a lots of applications in Biotechnology.



Singular Value Decomposition (SVD)

- What is SVD?
- It is a generalization of the notion of eigenvectors from square matrices to any kind of matrix.
- If A is a diagonalizable *square* matrix, then $A = PDP^{-1}$.
- If A is symmetric, then $A = PDP^{T}$. Where $P^{T}=P^{-1}$ (i.e. $PP^{T}=I$)

 Here, D = diagonal matrix with eigenvalues on the diagonal And P = Each column is the corresponding eigenvector
- X = (real) N × D matrix, then

The columns of U are called the left singular vectors, and the columns of V are called the right singular vectors.

U=N×N orthogonal matrix. i.e. $U^{T}U=U^{T}U=I$ V=D×D orthogonal matrix. i.e. $V^{T}V=VV^{T}=I$, and S = N × D matrix containing the r = min(N,D) **singular values** $\sigma^{i} \ge 0$ on the main diagonal, with 0s filling the rest of the matrix.

How to decompose X? What are the singular values?

 Since X^TX is symmetric, so there exist an orthogonal matrix V such that

$$X^T X = VDV^T$$
, where $V = \text{evec}(X^T X)$

- But XX^T is also symmetric, so there exist an orthogonal matrix U such that $X^T X = UD_1U^T$, where $U = evec(XX^T)$.
- How D and D₁ are related? Claim: XX^T and X^TX have the same nonzero eigenvalues!
 - Let eval(XX^T) = the set of non zero eigenvalues of XX^T
 - and eval($X^T X$) = the set of non zero eigenvalues of $X^T X$, we can show eval(XX^T) = eval($X^T X$).

Theorem: XX^T and X^T X have the same none zero eigenvalues.

- That is to show eval(XX^T) = eval($X^T X$).
- Work out details with the students on the board.
- Now you order the eigenvalues of XX^T, in the same way as you order the eigenvalues of X^T X in an ascent order. Since all the eigenvalues are ≥0, then following the non zero eigenvalues there should be all zero eigenvalues.
- Now you find the U with the column putting eigenvectors corresponding to the ordered eigenvalues. Then U will be unique.
- Now $X = VDV^T = VD^{1/2}D^{1/2}V$, we want to stick the U in the middle. But U is NxN. We have to be careful to make the dimension match. So we change $D^{1/2}$ to $S = N \times D$ matrix containing the $r = \min(N,D)$ singular values $\sigma^i \ge 0$, where σ^i is the sqaure root the corresponding eigenvalue. Then stick U^TU , which is an identity matrix, in the middle. Please see the figure on the next slide.

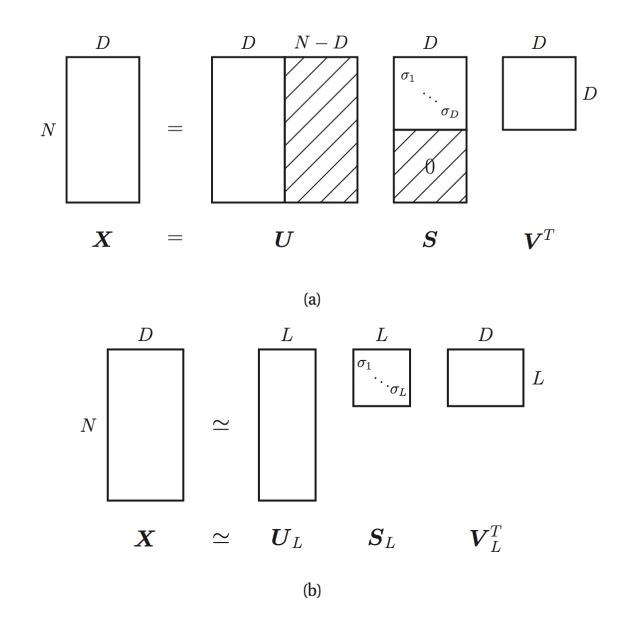
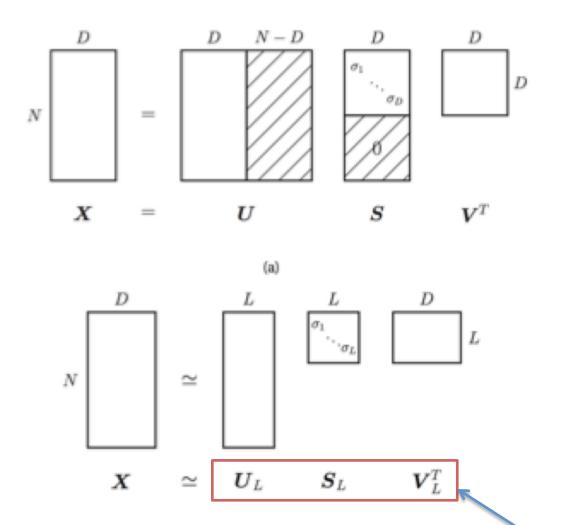


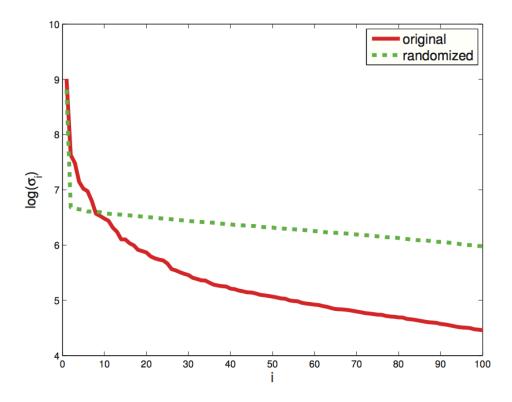
Figure 12.8 (a) SVD decomposition of non-square matrices $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$. The shaded parts of \mathbf{S} , and all the off-diagonal terms, are zero. The shaded entries in \mathbf{U} and \mathbf{S} are not computed in the economy-sized version, since they are not needed. (b) Truncated SVD approximation of rank L.

Application: SVD as a dimension-reduction technique



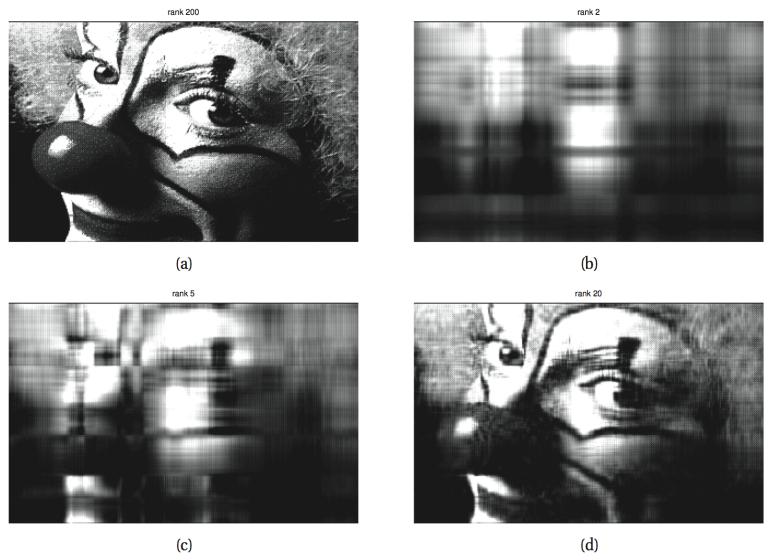
- Example: Data compression
- Rank the eigenvalues in descent order. Set all the small eigenvalues (equivalently singular values) to zero, you will compress the data.

The error in this approximation is $||\mathbf{X} - \mathbf{X}_L||_F \approx \sigma_{L+1}$



12.10 First 50 log singular values for the clown image (solid red line), and for a data d by randomly shuffling the pixels (dotted green line). Figure generated by svdImageDemo.

Consider the 200×320 pixel image. This has 64,000 numbers in it. We see that a rank 20 approximation, with only $(200 + 320 + 1) \times 20 = 10,420$ numbers is a very good approximation.



Rank = 20 means setting all $\sigma_L = 0$ for L \geq 21. Error is about σ_{21} .

Figure 12.9 Low rank approximations to an image. Top left: The original image is of size 200×320 , so has rank 200. Subsequent images have ranks 2, 5, and 20. Figure generated by svdImageDemo.

Data Compression

- If your boss wants to compress a data set, you may ask him/her what would be the threshold of an error acceptable. (Since naturally, compressing data will loss information, it is reasonable to ask the threshold of an acceptable error.)
- If your boss say 5%, you perform an SVD on your data, and find the singular value σ_{L_i} Say L = 30, which is close to 5% and then set all σ_{L} = 0 for L≥31. You know after the data compress, your error is about σ_{31} which is about 5%.

$$oldsymbol{X} \simeq oldsymbol{U}_L oldsymbol{S}_L oldsymbol{V}_L^T$$

Changing gear:

Generative learning Algorithm

 Work out details with the students on the board.

A Different Approach, called **Generative Leaning Algorithm**

- First, looking at cats, we can build a model of what cats look like.
- Then, looking at dogs, we can build a separate model of what dogs look like.
- Finally, to classify a new animal, we can match the new animal against the cat model, and match it against the dog model, to see whether the new animal looks more like the cats or more like the dogs we had seen in the training set.

Gaussian Discriminant Analysis (GDA) Model

 Work out details with the students on the board.

- Change gear to techniques to design algorithm for fast computation.
- (Only if time permits. Otherwise, please read the following slides instead.)

Recall we studied earlier: Computational Techniques such as gradient descent and Newton's method

- For big data, the closed formula involving find inverse a huge matrix, it may not be the fastest or most stable way.
- Other Computational methods used:
 - Cholesky decomposition
 - Gradient descent
 - Stochastic gradient descent
 - Newton's method

How to make the computation fast? Cholesky Decomposition

Theorem: If A is a $n \times n$ real, symmetric and positive definite matrix then there exists a unique lower triangular matrix G with positive diagonal element such that

$$A = GG^{T}$$
.

Proof: Work out details with the students on the board.

Recall: If A is an upper triangular matrix, then AX = b can be solved by backward substitution.

Upper Triangular Matrix:

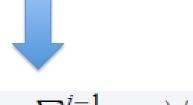
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

Backward substitution

$$x_i = (b_i - \sum_{j=i+1}^n a_{ij}.x_j)/a_{ii}$$



$$x_i = (b_i - \sum_{j=1}^{i-1} a_{ij}.x_j)/a_{ii}$$

Similarly when A is lower triangular.

If A = LU, then Ax = b can be solved quickly.

- Then Ax = b can be written as
- LUx =b
- Let y = Ux
- Then Ly = b, solve y first
- Then use Ux = y to solve for x.

Another way to find Cholesky decomposition

Another way to find out the cholesky decomposition

Suppose

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

We need to solve the equation

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ 0 & l_{22} & \cdots & l_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & l_{nn} \end{bmatrix}$$

Example of find Cholesky Decomposition

Suppose

$$A = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 10 & 2 \\ -2 & 2 & 5 \end{bmatrix}$$

Then Cholesky Decomposition

For
$$k$$
 from 1 to n

$$l_{jk} = \left(a_{jk} - \sum_{s=1}^{k-1} l_{js}^{2} l_{ks}\right)^{1/2}$$
For j from $k+1$ to n

$$l_{jk} = \left(a_{jk} - \sum_{s=1}^{k-1} l_{js} l_{ks}\right) / l_{kk}$$

Entry	General formula	Output
I_{11}	$\sqrt{a_{11}}$	2
l_{21}	a_{21}/l_{11}	1
l_{31}	a_{31}/l_{11}	-1
l_{22}	$\sqrt{a_{22}-l_{21}^2}$	3
l ₃₂	$(a_{32} - l_{21}l_{31})/l_{22}$	1
l_{33}	$\sqrt{a_{33}-l_{31}^2-l_{32}^2}$	$\sqrt{3}$

Now,

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & 1 & \sqrt{3} \end{bmatrix}$$

The third way to do Cholesky decomposition

- PAP^T = D, where P is an orthogonal matrix. (Why?)
- Work out more details with the students on the board.

 Note: This is a relatively expensive method if you want to use determinant to find eigenvalues.

Here are some R code to find Cholesky Decomposition

- x < -matrix(c(4,2,-2,2,10,2,-2,2,5), ncol=3, nrow=3)
- cl < -chol(x)
- If we Decompose A as LDL^T then

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 1/3 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Applications of Cholesky Decomposition

- We use Cholesky Decomposition to solve the system of linear equation Ax=b, where A is real symmetric and positive definite.
- In regression analysis, we also use it to estimate the parameter if X^TX is positive definite.
- In Kernel principal component analysis, we also need to use Cholesky decomposition. (Weiya Shi; Yue-Fei Guo; 2010)