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Today’s topics

* The k-means clustering algorithm
* Mixtures of Gaussians
* Jensen’s inequality

* The EM (Expectation-Maximization)
Algorithm



What is a clustering problem?
A clustering problem is an unsupervised learning problem

e Given a training set {x), ..., x(M}, here each x!!is in R".
* Goal: want to group the data into a few cohesive “clusters.”

* Note: the difference between unsupervised learning and
supervised learning is that no labels y(i) are given.

Supervised learning Unsupervised learning
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In general, if only {x, . . ., x(m} qiven for a problem, but no
Iabills y(;) are given, then the problem is an unsupervised learning
problem!



The k-means clustering algorithm

1. Initialize cluster centroids puq, o, ..., pur € R™ randomly.

2. Repeat until convergence: {

For every 1, set

¢ .= argmin ||z" — ;| %
j

For each 7, set

L = > iny 1 = j}al
’ Z:il I{C('i) — ]}




Example of K-mean clustering
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Example of K-mean clustering
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Example of K-mean clustering
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Example of K-mean clustering




Example of K-mean clustering

In the Figure above for K-means algorithm: Training examples are
shown as dots, and cluster centroids are shown as crosses.

(a) Original dataset.

(b) Random initial cluster centroids (in this instance, not chosen to
be equal to two training examples).

(c-f) lllustration of running two iterations of k-means.

In each iteration, we assign each training example to the closest
cluster centroid (shown by “painting” the training examples the
same color as the cluster centroid to which is assigned); then we
move each cluster centroid to the mean of the points assigned to it.
(Best viewed in color.)

Images courtesy Michael Jordan.



Q: Is the k-means algorithm
guaranteed to converge?

Yes it is, but it might convergent to a local optimization point instead a
global one in following sense.

Define the distortion function to be: J(e, ) = E 2™ — o ||?
i—1

Here J measures the sum of squared distances between each training
example x{)and the cluster centroid p; to which it has been assigned.

It can be shown that k-means is exactly coordinate descent on J.

This means that the inner-loop of k-means repeatedly minimizes J with
respect to ¢ while holding u fixed, and then minimizes J with respect to p
while holding c fixed.

Thus, ] must monotonically decrease, and the value of J must converge.
(Usually, this implies that c and p will converge too.)

In theory, it is possible k-means to oscillate between a few different
clusterings—i.e., a few different values for c and/or p—that have exactly

the same value of J, but this almost never happens in practice.)



Note: The distortion function J is non-convex, so no
global minimum is guaranteed.

 That is to say the coordinate descent on J is not
guaranteed to converge to the global minimum: k-
means can be susceptible to local optima.

* But very often k-means will work fine and come up
with very good clusterings despite this.

* Try heuristic method if you are worried about getting
stuck in bad local minima:

 Run k-means many times (using different random
initial values for the cluster centroids ).

* Then, out of all the different clusterings found, select
the one that gives the lowest distortion J(c, p).



Change gears:

Multlvarlate Gaussian Mixture Model

Mimic linear combination of vectors,
here /s a convex combination.
(0) E : ¢ (4 I"l’ (] 2 (/ )

where the " vector component Is characterized by normal distributions

weights ¢;, means p; and covariance matrices ;.



Gaussian Mixture Models

Like K-Means, GMM clusters have

centers.

In addition, they have probability

: distributionsthat indicate the
\ probability thata point belongs to the
@ ) ’. uster,
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How Gaussian mixture model and
Expectation-Maximization (EM)
related?

Key: the posterior distribution p(@|x) is also a Gaussian mixture mode !
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with new parameters qﬁz, f; and 2 that are updated using the EM algorithm.

What is an EM algorithm?

EM = Expectation-Maximization



The EM (Expectation-Maximization)
Algorithm

* Expectation of what?
e Maximization of what?

e Work out details with students on the board.



EM (Expectation-Maximization)
Algorithm

e Given a training set {x\1), ..., x(M}

* Note: since we are in the unsupervised learning
setting, so these points do not come with any
labels.

* Goal: Model the data by specifying a joint

distribution 4(2(®) »(2)) = p(z?]20)p(z).

Here, 29 ~ Multinomial(¢) »; > 0, Z? 05 =1
and the parameter ¢; gives p(2(?) = j

and (20 = j ~ N (p;,%;)
ki denote the number of values that the z(¥’s can take on.




Work out details with students on the
board

 The parameters of our model are thus ¢, u
and > . To estimate them, write:



Jensen’s inequality

Theorem. Let f be a convex function, and let X be a random wvariable.

Then:
E[f(X)] > f(EX).

Moreover, if f is strictly convex, then E[f(X)] = f(EX) holds true if and
only if X = E[X]| with probability 1 (i.e., if X is a constant).

f(a)

Ef(X0]

f(b)
f(EX)




Geometry of EM algorithm

g;

Supplementary Figure 1 Convergence of the EM algorithm. Starting from initial parameters 6’ ,
the E-step of the EM algorithm constructs a function &: that lower-bounds the objective function

log P(x:6) . In the M-step, 01 s computed as the maximum of Z:. In the next E-step, a new

. T X . +2)
lower-bound 9:+1 is constructed; maximization of :+1 in the next M-step gives & , etc.



Density estimation using EM Algorithm
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Anomaly Detection using Density
Estimation
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Recall: Maximum Likelihood Estimation (IMLE)
and Maximum a Posterior{MAP)

In both cases, the data D is given.

This is the prior: i.e. what you p€fieved before

<
S
;‘?G
. (Y
you saw the evidence. §

This Is the posterior

This is the normalizing constant:
L.e. The likelihood of that evidence under
any circumstances.



Recall: MLE =Maximum Likelihood
Estimation

* |n statistics, maximum likelihood estimation
(MLE) is a method of estimating the
parameters of a statistical model given
observations, by finding the parameter values
that maximize the likelihood of making the
observations given the parameters.



Recall: MLE = Maximum Likelihood
Estimate

Assume that we want to estimate an unobserved population parameter 6 on the basis of observations
2. Let f be the sampling distribution of x, so that f (m ] 0) is the probability of 2 when the underlying
population parameter is 8. Then the function:

0 f(z|0)
is known as the likelihood function and the estimate:

by (z) = argmax f{z |0

is the maximum likelihood estimate of 0.



Recall: MAP

e Maximum a posteriori (MAP) estimation is a
model of posterior distribution.

e The MAP can be used to obtain a point
estimate of an unobserved quantity on the
basis of empirical data.




Now assume that a prior distribution g over  exists. This allows us to treat 6 as a random variable as
in Bayesian statistics. We can calculate the posterior distribution of 6 using Bayes' theorem:

fle]6)g(6)

fe | 9)g(0) dJ
UISS)

0 f(0]2) =

where g is density function of §, © is the domain of g.

The method of maximum a posteriori estimation then estimates 6 as the mode of the posterior
distribution of this random variable:

Byiap (z) = argmax (9 | z) = argmax fle16)g = argmax f(z | 6) g(f).

” " [ rernoa

The denominator of the posterior distribution (so-called marginal likelihood) does not depend on 6



