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Today’s	Topics	
•  Recap	of	Bayesian	Reasoning		
•  Bayesian	Linear	Regression	(which	we've	
already	seen)		

•  Bayesian	Logis'c	Regression	(Review)		
•  Bayesian	Inference	
•  Intractable	Integrals	and	Mo'va'on	for	
Approximate	Methods	(only	if	'me	permits)	

•  Learning	Theory	
	

	



Today’s	Topics	



Let’s	Recap	on		
Bayesian	Reasoning/Bayesian	Inference	
•  Key:	Put	distribu-ons	on	everything	and	then	
use	rules	of	probability!	

•  Recall	again:	Bayes’	Theorem	
	



Visualize	Bayes’	Theorem	



Recall:	Maximum	Likelihood	Es'ma'on	(MLE)	
and	Maximum	a	Posterior	(MAP)	

In	both	cases,	the	data	D	is	given.	



Work	out	details	with	the	students	on	
the	board	

•  Maximum	Likelihood	Es'ma'on	(MLE)	
•  Key:	Find	a	good	values	of	H	such	that	P(D|H)	
is	maximized.	

That	is:	Es-mate	the	true	H	(hypothesis/model	
parameters)	that	the	data	D	came	from.	



Recall:	Linear	Regression	
Given	some	data:			



Which	H(ypothesis)	minimize	the	error?		



Assume	a	linear	model	

This	is	equivalent	to		



Geometrically	you	can	see	the	solu'on!	



Work	out	details	with	the	students	on	
the	board	

•  Maximum	a	Posterior	(MAP)	
		



Compare	MLE	with	MAP	

•  Details	on	board.	



Naïve	Bayes	

To	maximize	this	product,	we	take	log	of	it	
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Bayesian	Linear	Regression	

•  Why	not	use	MEL?	
•  Since	it	is	o[en	over-fi^ng.	
•  How	can	we	address	this?	
•  Why	not	use	MAP?		We	put	a	prior		
•  But	we	do	not	have	representa-on	of	our	
uncertainty.	



Let’s	see	an	example	 Given	some	data:			

What	if	you	have	to	make	a	predic-on	for	an	investment	of	big	amount	money	or	a	cancer?	

x	

y	

Need	to	measure	how	uncertain	you	are!	
This	is	where	the	Bayesian	methods	coming	in.	

Why	Bayesian?		Op-mize	certain	loss/cost	func-on.	
Gives	us	P(y|x)													This	is	really	we	want.		



Work	out	details	with	the	students	



Be	careful	with	the	nota'ons!	
Some'mes	we	use	A	for	the	design	
matrix	and	x	as	parameter	vector!		

•  Where	y	=	(y1,	y2,	…,	yn)T	

•  Where	A	is	the	design	matrix.	
	

•  A	=		



Important	fact	for		
Bayesian	Linear	Regression	

•  Keys:		
•  If	we	put	Gaussian	distribu-ons	for	both		
likelihood	and	for	the	prior,	the	the	posterior	
will	be	another	Gaussian	distribu-on!	

•  Its	predic-ve	distribu-on	is	again	Gaussian!	
•  Both	are	closed	solu-ons!	
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Bayesian	Logis'c	Regression	

•  We	will	see	that		
•  There	is	no	analy-c	closed	formula	solu-ons	
(the	integra-on	involved	is	not	integratable,	
usual	approxima-on	method	using	grids	is	
exponen-al	(#p,	something	as	NP-hard).		

•  We	call	such	an	integra'on	is	intractable.	
•  We	will	have	to	smart	approxima-on	method	
called	Monte	Carol	approxima'on.	



Bayesian	Logis'c	Regression	

•  Work	out	details	with	students	on	the	board.	
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Bayesian	Inference	
	

•  Work	out	detail	with	students	on	the	board.	



Today’s	Topics	



Monte	Carlo	Approxima'on	
	



Close	your	eyes	and	throw	a	ball	to	it,	what	is	
the	chance	to	get	into	the	green	area?	



Grid	Approxima-on	
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Learning	Theory	

	
– Bias/Variance	Trade-off	
– Union	and	Chernoff/Hoeffding	Bounds	

	
This	topic	will	be	closely	following	Prof.	Ng’s	
notes	on	Learning	Theory.	



Bias/variance	tradeoff	
	y = θ0+θ1x +θ2x2 

Did	not	result	in	a	good	model!	
Specifically,	even	though	the	5th	order	
polynomial	did	a	very	good	job	
predic-ng	y	(say,	prices	of	houses)	from	
x	(say,	living	area)	for	the	examples	in	
the	training	set,	we	do	not	expect	the	
model	shown	to	be	a	good	one	for	
predic-ng	the	prices	of	houses	not	in	
the	training	set.			

Does	not	generalize	well	àGeneraliza'on	error	

This	linear	model	is	too	
simple.	it	suffers	from	large	
bias,	and	may	underfit,(i.e.,	
fail	to	capture	structure	
exhibited	by)	the	data.	
	
	

This	is	a	good	
One!	

Large	bias		 Large	variance	



Defini'on	of	Generaliza'on	Error	
	

•  Whatever	errors	you	captured	in	your	model,	
either	fail	to	capture	or	“over”	capture	from	
your	small	set	of	training	data,	that	do	not	
reflect	the	wider	palern	of	the	rela-onship	
between	x	and	y	on	your	tes-ng	data	are	
called	genera-on	errors.		

•  Generaliza'on	Error	consists		
– Bias	
– Variance	



Variance	and	Bias	
•  For	example,	when	fi^ng	a	5th	order	polynomial	as	in	the	
rightmost	figure,	there	is	a	large	risk	that	we’re	fi^ng	
palerns	in	the	data	that	happened	to	be	present	in	our	
small,	finite	training	set,		but	that	do	not	reflect	the	wider	
palern	of	the	rela-onship	between	x	and	y.		

•  This	could	be,	say,	because	in	the	training	set	we	just	
happened	by	chance	to	get	a	slightly	more-expensive-than-
average	house	here,	and	a	slightly	less-expensive-than-
average	house	there,	and	so	on.		

•  By	fi^ng	these	“spurious”	palerns	in	the	training	set,	we	
might	again	obtain	a	model	with	large	generaliza-on	error.	
In	this	case,	we	say	the	model	has	large	variance.	

•  We	define	the	bias	of	a	model	to	be	the	expected	
generaliza-on	error	even	if	we	were	to	fit	it	to	a	very	(say,	
infinitely)	large	training	set.	



There	is	a	tradeoff	between	bias	&	variance.	

•  Meaning:	If	our	model	is	too	“simple”	and	has	
very	few	parameters,	then	it	may	have	large	
bias	(but	small	variance).		

•  But	if	it	is	too	“complex”	and	has	very	many	
parameters,	then	it	may	suffer	from	large	
variance	(but	have	smaller	bias).		

•  In	the	example	above,	fi^ng	a	quadra'c	
func'on	does	be_er	than	either	of	the	
extremes	of	a	first	or	a	fi[h	order	polynomial.	



The	Union	Bound	



	
	

Hoeffding	Inequality	/	Chernoff	Bound		
	
	



The	Chernoff	bound	says	that	if	we	take	φˆ—the	
average	of	m	Bernoulli(φ)	random	variables—to	be	
our	es-mate	of	φ,	then	the	probability	of	our	being	
far	from	the	true	value	is	small,	so	long	as	m	is	large.		
	
Another	way	of	saying	this	is	that	if	you	have	a	
biased	coin	whose	chance	of	landing	on	heads	is	φ,	
then	if	you	toss	it	m	-mes	and	calculate	the	frac-on	
of	-mes	that	it	came	up	heads,	that	will	be	a	good	
es-mate	of	φ	with	high	probability	(if	m	is	large).	

	
	

Meaning	of	Hoeffding	inequality	(also	
called	Chernoff	bound)		

	
	



•  Using	the	Union	Bound	and	Chernoff	Bound,	we	will	
be	able	to	prove	some	of	the	deepest	and	most	
important	results	in	learning	theory.	

•  To	simplify	our	exposi-on,	let’s	restrict	our	
alen-on	to	binary	classifica-on	in	which	the	labels	
are	y	∈	{0,	1}.		

	
•  Everything	we’ll	say	here	generalizes	to	other,	
including	regression	and	mul--class	classifica-on,	
problems.	



PAC	=	Probably	Approximately	Correct	



Important	Results	of	Learning	Theorem	
•  In	certain	sense,	training	error	will	be	close	to		
generaliza-on	error	with	high	probability,	
assuming	m	is	large.	



How	to	auto	select	model?	



In	this	course,	we	assume						is	finite.		






















